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Summary

The synchronization of cilia in biological tissues was first observed decades ago,

attracting the attention of researchers across various disciplines. Firstly, cilia

interact with a surrounding fluid, described by the laws of hydrodynamics at

low Reynolds number. This regime of the Navier-Stokes equation was largely

unknown at the beginning of the 20th century, and the way objects like cilia

interact with the fluid started to be studied in pioneering work by Taylor,

Gray and Hancock in the 1950s. Secondly, the hydrodynamics at play in

microscopic active systems like cilia leads to a coupling interaction between

the objects of the system, and represents a class of synchronizing systems.

Synchronization in general has been a very active and broad topic from the end

of the 20th century. However, many questions regarding the synchronization

of cilia were only addressed in the last decade, and remain open to date.

This research is motivated by the idea that knowing how cilia act as active

elements to generate a fluid flow, and how the cooperative behaviour of cilia

arrays emerges, could help screening and understanding rare genetic diseases

involving the loss of synchronization or motility of cilia. Understanding the

hydrodynamics and swimming at micrometric scales is also a prerequisite for

building some microrheology devices and, maybe in the future, nanobots.

This thesis focuses on experimental models of oscillators, made of colloidal

particles driven by optical tweezers. Several oscillators are coupled through

the hydrodynamic interaction only, and help understanding the properties of

synchronization of cilia and flagella.

Chapter 1 provides background on the hydrodynamic interaction at low

Reynolds number, explaining in particular how to describe the forces exerted



from the fluid on a spherical particle, coming from the motion of other

surrounding particles. Such hydrodynamic interactions lead to coupling forces

between different objects, and is possibly the key to the synchronization of

cilia. Chapter 2 is an introduction to cilia and flagella, and reviews the existing

models of oscillators designed to describe the cyclic motion of these biological

micro-motors and study how different oscillators couple.

Most of the models described above are first studied analytically and/or in

numerical simulations. This thesis presents the experimental implementation

of two models of oscillators, and the extension of the theory that was

associated with them. In Chapter 3, I describe the optical tweezers setup

used to apply controlled forces to the particles to implement the oscillators.

Chapters 4, 5 and 6 present results on “rowers” that are one-dimensional (with

a well defined beat direction), intrinsically nonlinear, two-state oscillators.

This simple model lead to many findings: determination of a threshold of

Brownian motion for the loss of synchronization, control of the locked state

of two “rowers”, and a normal modes analyzis method to obtain information

on the dynamical solution of any given configuration of rowers. Chapter 7

describes an extension of this model of oscillator that adds freedom in the

direction of beating. Arrays of these oscillators can synchronize, but also

align, making the hydrodynamic interaction a good candidate to explain the

alignment of cilia during their growth.

In Chapters 8 and 9, the synchronization of another model oscillator is

discussed, the “rotors”. These are beads driven along circular trajectories.

In Chapter 8, a two-rotors experiment validates two existing theoretical

mechanisms leading to synchronization: the shape of the driving force profile,

and the flexibility of the orbit compared to the prescribed trajectory. The

cooperative behaviour of configurations of more than two rotors, like chains

propagating a phase pattern (metachronal wave) are described in Chapter 9.
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Chapter 1

Hydrodynamic interaction at

micrometric scales

1.1 Introduction

Hydrodynamics describes a wide range of natural phenomena at various scales.

Convective motions in the Earth’s mantle [1, 2], air flows in meteorology or in

the study of the drag of a plane, the swimming of fish or smaller millimetric

aqueous organisms, or even smaller, bacteria, are all described by the same

Navier-Stokes equation of hydrodynamics. However, depending on the system,

different terms can dominate in this equation, leading to different behaviours.

In particular, the dimensionless Reynolds number, which compares the viscous

forces and the inertial forces, separates different regimes of behaviour of the

fluid. In the previous examples, the Earth’s mantle and the bacteria are

systems dominated by viscous forces [3], while fish and planes rely on inertial

forces. In intermediate systems like small aqueous organisms, both resistive

forces and acceleration are important, which makes the hydrodynamics of such

systems very complex [4].

This chapter describes hydrodynamics from the perspective of colloidal

sciences, at a micrometric length scale. It presents the equation of fluid

dynamics and its simplification at low Reynolds number. Under some

21



1. HYDRODYNAMIC INTERACTION AT MICROMETRIC SCALES

assumptions, the interaction between solid objects in a fluid can be described

by a mobility tensor relating the forces acting on the objects to their velocities.

Different tensors can be used, depending on the geometric parameters

describing the objects and their positions, and depending on the presence of

a solid wall that adds a no-slip boundary condition of the fluid in the vicinity

of the wall.

1.2 Navier-Stokes equation

The evolution of the velocity field u(r, t) of an incompressible fluid is described

by the Navier-Stokes equation [5]

ρ

[
∂u

∂t
+
(
u · #«∇

)
u

]
= − #«∇p+ η∇2u + f , (1.1)

where p(r, t) is the pressure field, η the viscosity of the fluid, ρ its density

and f(r, t) includes all external volumetric forces, such as gravity. This

nonlinear equation can describe the fluid dynamics of very different systems,

from weather predictions to the flow generated by a swimming bacteria. It

cannot be solved analytically in the general case. Solving it in particular cases

usually also involves the use of the equation of conservation of mass in the

system [5]
∂ρ

∂t
+

#«∇ · (ρu) = 0 (1.2)

that simplifies into
#«∇ · u = 0 (1.3)

for an incompressible fluid.

1.3 Low Reynolds number flows

Hydrodynamics at the scale of cells or bacteria exhibit large differences with

the fluid dynamics of conventional macroscopic systems. The main difference

resides in the Reynolds number which is the ratio between the inertial forces

22



1.4. Stokes equation

and the viscous forces of a system of a typical size L, with typical flow velocity

u:

Re =
Finertial

Fviscous

=
ρuL

η
. (1.4)

Considering a biological system of E. coli bacteria in water, L ∼ 1 µm, u ∼
10 µm·s−1, ρ ∼ 103 kg·m−3 and η ∼ 10−3 Pa·s. The corresponding Reynolds

number is 10−5. (For comparison, Re ∼ 104 for a human swimmer.) In this

low Reynolds number regime, the flow is laminar and dominated by viscous

forces that lead to simplifications in the Navier-Stokes equation (1.1):

ρ
∂u

∂t
= − #«∇p+ η∇2u + f . (1.5)

The inertial term ρ
(
u · #«∇

)
u has been neglected compared to the viscous forces

η∇2u. In micrometric systems, “usual” volumetric forces, such as gravitation,

can be neglected in the external volumetric force field f , so that f = 0.

1.4 Stokes equation

Eq. (1.5) can be solved for a semi-infinite fluid at z > 0 lying on top of an

infinite plane in the directions (x, y) that is subject to sinusoidal oscillations

of amplitude U0 along x at an angular frequency ω. At the surface of the plane

at z = 0, a no-slip boundary condition is assumed. This condition is valid

for most surfaces and fluids, when looking at colloidal length scales (1 µm

minimum), as the slip length is typically of the order of 10 nm [6, 7]. The

velocity of the fluid at z = 0 is therefore equal to the velocity of the plane:

ux(0, t) = U0 exp (iωt) . (1.6)

The resulting velocity field of the flow, obtained by solving the Navier-Stokes

equation, describes a fluid that oscillates by following the motion of the plane

in its vicinity and does not move far from the plane:

ux(z, t) = U0 exp
[
−(1 + i)

z

δ

]
exp (iωt) , (1.7)

23



1. HYDRODYNAMIC INTERACTION AT MICROMETRIC SCALES

with δ =

√
2η

ωρ
that characterizes the attenuation length of the oscillations.

At the bacteria scale, in water, η ∼ 10−3 Pa·s, ρ ∼ 103 kg·m−3 and ω ∼
50 rad·s−1, so δ ∼ 200 µm. This length is much larger than the size of the

bacteria and — at least in this thesis — the range at which the hydrodynamic

interaction is studied. It can therefore be considered that the action of a

moving particle induces all changes to the fluid instantly, which leads to the

Stokes equation [5, 8]:

0 = − #«∇p+ η∇2u + f . (1.8)

As no more time derivatives appear in the equation of motion of the fluid,

a “swimmer” with a cyclic motion needs to use at least two configurational

degrees of freedom to be able to modify the drag coefficient and generate an

average net flow. This is known as the scallop theorem, well explained by

Purcell in 1977 [3]:

(. . . ) I change my body into a certain shape and then I go back to the

original shape by going through the sequence in reverse. (. . . ) Time, in

fact, makes no difference — only configuration. (. . . ) So if the animal

tries to swim by a reciprocal motion, it can’t go anywhere.

This problem occurs at low Reynolds number, because, if an organism stops

to move, all the fluid around it will stop moving as well. Micro-swimmers are

therefore very different from macroscopic swimmers. As Sir Geoffrey Taylor

mentioned in 1951 [9], the latter take advantage of the inertial forces to propel

themselves in one direction. By swimming, they create circulations of the fluid

that are not stopped when the propulsive motion is stopped. These inertial

flows create an efficient propulsive force by dynamical reaction. A scallop is a

good example of a “swimmer”, with only one degree of freedom (the opening

angle of the shell) that uses these inertial forces. By closing its shell quickly,

the scallop will move forward over a large distance, while by opening it slowly,

the inertial forces will be reduced and it will create a reverse motion of the

scallop much smaller than the preceding forward move. This results in a

net forward motion over a cycle. In a low Reynolds number environment, the

scallop would just move back and forth, without net direction of motion. Small

swimmers like flagellated microorganisms cannot use this property to move:

24



1.5. Stokes drag on a sphere

if they stop their configuration change, the surrounding fluid stops moving

instantaneously and no propulsive force is maintained by inertia. Therefore,

to move in a given direction in average, they need a more complex cycle of

body deformation [10, 11], with at least two degrees of freedom, often referred

as non-reciprocal cycle.

An analogy helps to understand how dramatic the situation is for micrometric

swimmers: By estimations of the Reynolds number, microorganisms swim in

an environment that is equivalent to an ant trying to propel in very viscous

fluid, typically such as peanut butter, at a velocity of a few millimetres per

second. This image gives both an idea of how swimming looks like in a flow

dominated by viscosity, and of the big forces the organism has to deploy to

move one part of its body in the fluid (keeping in mind the small size of the

swimmer).

Taking the numbers for E. coli in Section 1.3, two quantities related to inertial

effects can be estimated: The characteristic time for the bacteria to stop after

being given an impulse u is about Re×L/u ∼ 1 µs (assuming the mass of the

bacteria is ρL3), and the distance it would travel thanks to the impulse is only

10 pm, thus justifying that inertial effects can be neglected for microswimmers.

1.5 Stokes drag on a sphere

Similarly to the oscillating plane that was generating an oscillating flow, a

single driven particle excerts a force on the fluid. More precisely, if the

particle is maintained at a constant velocity v in the fluid (with no angular

momentum), it will feel a resistive force −F opposite to the force F acting on

the fluid [8]:

F = γv , (1.9)

where γ is the resistance matrix (of size 3 × 3 in 3d). Note that a torque

might also result from the applied translational momentum.

This is a general result, in which inertial terms are neglected as a consequence

of the low Reynolds number. The matrix γ depends on the shape of the object
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1. HYDRODYNAMIC INTERACTION AT MICROMETRIC SCALES

and can be calculated in simple geometries. For a spherical particle of radius

a, the problem can be solved analytically, and γ is diagonal such that F is

simply proportional to v:

F = γv , (1.10)

with γ = 6πηa (Stokes drag) [12].

The fluid flow u(r) generated by the particle at r0 can be calculated in the far

field by assuming that the particle exerts a single-point force on the fluid:

f(r) = Fδ(r− r0) . (1.11)

Here, δ is the Dirac delta function. Note that f is a volumetric force, but its

integral over the whole space is F.

Since Eqs. (1.3) and (1.8) are linear, and since the dynamics is supposed slow

enough to assume an instant propagation of the fluid flow because of the

application of the force f (see Section 1.4), the fluid flow far from the sphere

can be written

u(r) = T(r− r0)F . (1.12)

Here, u(r) represents the solution of the equations of the flow generated by a

point-like delta force. Such a solution is called a Stokeslet [13]. T is a 3 × 3

matrix (in 3d), the Oseen matrix, and can be calculated by solving Eqs. (1.3)

and (1.8). To the leading term in a/r, the solution is [5, 14]:

T(r) =
1

8πηr
(I + êr ⊗ êr) , (1.13)

where êr is the unit vector in the direction of r, I is the unit matrix and ⊗
represents the dyadic tensorial product.

1.6 Oseen tensor

The aim of this section is to derive the hydrodynamic interaction that couples

the velocities of several particles depending on the driving forces acting on

them. Eqs. (1.12) and (1.13) give the fluid flow generated by a single particle
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1.6. Oseen tensor

Figure 1.1: N particles are driven by forces Fi. This driving results in
the velocities vi, constant if the forces are constant, as inertia is neglected.
The individual velocities are not exactly in the same direction as the forces,
because of hydrodynamic coupling through the fluid that surrounds the
particles.

driven with a force F. Because of the no-slip boundary condition on any

particle, if another particle, not driven, is placed at a position r, the velocity

of that particle, induced by the presence of the first driven particle, is the

velocity of the fluid u(r), as given by Eq. (1.12).

By superposition it is easy to generalize the previous result to a system of N

spherical particles, like in Fig. 1.1. This is a powerful method, as non-spherical

objects, like filaments can be described as an ensemble of spheres, each acting

as a Stokeslet [15]. Each particle i, at a position ri, is driven by a force Fi.

It also has a velocity vi that results from the driving force acting on that

particle, but also from all the coupling forces from the other particles that

propagate through the fluid flow. In the general case, the superposition of

Stokeslets created by several moving particles can be written:

vi =
n∑
j=1

µi,jFj . (1.14)

µ is called the mobility matrix and is a N × N array which elements µi,j

are second-rank tensors (3× 3 matrices in 3d). The whole mobility matrix is

therefore described by (3N)2 scalars. When superposing Stokeslets described

by Eqs. (1.12) and (1.13),

µ = H , (1.15)
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with H the Oseen tensor, equal to [5, 14]:

Hi,j =


1

8πηri,j
(I + êi,j ⊗ êi,j) if i 6= j

I

6πηa
if i = j

. (1.16)

ri,j = |ri − rj| is the distance between particles i and j, I denotes the unit

tensor, and êi,j is a unit vector in the direction defined by the two particles

i and j. In the above expression, the diagonal terms i = j are given by the

Stokes formula for the drag for a spherical particle, and the non diagonal terms

are given by Eq. (1.12). This result holds for particles far away (ri,j � a), as

it neglects the size of the particles.

The Oseen tensor estimates the hydrodynamic coupling very well in most of

the experiments described later in this thesis. It can be used both in numerical

simulations and theoretical calculations, to input hydrodynamic coupling in

the equations of motion of a system of several colloidal particles. An important

comment about this formula is that the coupling between different beads

decays slowly, as 1/r. The hydrodynamic coupling is therefore often referred

as a long-range interaction [5, 16, 17] which suggests that it can lead to strong

synchronization [18] in large arrays of oscillators like cilia.

1.7 Rotne-Prager tensor

The calculation of the Oseen tensor assumed that the flows generated by

each bead could be superposed separately. This is a calculation of the

hydrodynamic interaction to the leading order in a/ri,j. A more accurate

higher order calculation takes into account the fact that the flow u1(r) created

by a moving particle i = 1 will be perturbed by the presence of another particle

i = 2 (moving or not), that is building a “reflected” flow u2(r) [5, 8]. When

considering only a single reflection, the total flow is u = u1 + u2. Looking at

the effect of the presence of particle 2 on the velocity of the particle 1 requires

another step of reflection, leading to the flow field u = u1 + u2 + u3. This

flow can then be used to deduce the velocity v1 of the first particle. The
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1.7. Rotne-Prager tensor

first corrective term added by this “reflections” method to the previous Oseen

tensor is in (a/ri,j)
3 [19]. To include this term, it is however required to take

into account two other corrections. The first one is to write Eqs. (1.12) and

(1.13) up to the third order:

T(r) =
1

6πηr

[
3a

4r
(I + êr ⊗ êr) +

1

4

(a
r

)3

(I− 3 êr ⊗ êr)

]
. (1.17)

The second correction takes into account that a spherical particle at position r

in a non-uniform flow field u(r) undergoes translation motion slightly different

from the only flow velocity u(r):

v =
1

6πηa
F +

(
1 +

a2

6
∇2

)
u(r) , (1.18)

assuming that the particle also feels a driving force F. This is called the Faxén

theorem for translation [5].

All together, the corrections above lead to the following mobility matrix, called

the Rotne-Prager tensor [5]:

µi,j =


1

6πηa

[
3a

4ri,j
(I + êi,j ⊗ êi,j) +

1

2

(
a

ri,j

)3

(I− 3êi,j ⊗ êi,j)

]
if i 6= j

I

6πηa
if i = j

,

(1.19)

to the third order in a/ri,j. Note that it was considered that only translational

forces were applied to the particles. If external torques are also acting on

the particles, the Rotne-Prager tensor is described by four matrices that can

be calculated [5]: µtt, µrr, µtr and µrt where “t” denotes translation and

“r” rotation. For example µtr describes the effect of torques on particles on

their translational velocities. With these notations, the Rotne-Prager tensor

is written (
vi

ωi

)
=

N∑
j=1

(
µtt
i,j µtr

i,j

µrt
i,j µrr

i,j

)(
Fj

Gj

)
, (1.20)

with Gi the external driving torque acting on particle i, and ωi its angular

velocity.
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The reflection method can be iterated several times to obtain higher order

corrections.

1.8 Blake tensor

The tensors derived in Sections 1.6 and 1.7 are valid for an infinite fluid

(unbounded). However, many biological systems involve the hydrodynamic

coupling between objects that are moving close to a wall, with a no-slip

boundary condition. The Blake tensor aims to address this question. This

section provides expressions for the mobility matrix for a system ofN particles,

in the case of a wall located in the (x, y) plane at z = 0, as depicted on Fig. 1.2.

Figure 1.2: N particles, driven by forces Fi move at velocities vi.
The wall, with a no-slip boundary condition, sets a new constraint on the
fluid flow, that changes the hydrodynamic coupling between the particles,
compared to the case of an infinite fluid.

1.8.1 Drag on a sphere near a surface

The presence of a wall with no-slip boundary conditions changes the drag

coefficient on a sphere. Correcting terms to the Stokes drag can be added as a

series expansion in a/zi with a the sphere radius and zi the distance between

the particle and the surface [20]. An expansion to the sixth order has already

been used to study the flow generated by arrays of artificial cilia [21]. The
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1.8. Blake tensor

corresponding diagonal terms of µ are:

µx,xi,i = µy,yi,i =
1

6πηa

[
1− 9a

16zi
+

1

8

(
a

zi

)3

− 1

16

(
a

zi

)5
]

(1.21a)

µz,zi,i =
1

6πηa

[
1− 9a

8zi
+

1

2

(
a

zi

)3

− 1

8

(
a

zi

)5
]

(1.21b)

µα,βi,i = 0 for α 6= β . (1.21c)

1.8.2 Non-diagonal terms neglecting the size of the par-

ticles

To find the non diagonal terms µi,j (i 6= j) of the mobility matrix, Blake

proposed in [22] to describe the fluid flow created by a Stokeslet near a

surface by an image method (as in electrostatics). In this method, the no-slip

boundary condition at the wall is satisfied by describing the effect of the wall

as equivalent to an infinite fluid, but with a second Stokeslet at the mirror

position of the first Stokeslet and with an opposite force. For N particles, this

leads to the following expressions for the Blake mobility matrix [22, 23]:

µB
i,j =

1

8πη

[
GS(ri − rj)−GS(ri − rj) + 2z2

jG
D(ri − rj)− 2zjG

SD(ri − rj)
]
.

(1.22)

Here, the wall is at z = 0, ri = (xi, yi, zi) and ri = (xi, yi,−zi). The elements

of the Green functions are given by [22, 23]

GS
α,β(r) =

δα,β
r

+
rαrβ
r3

(1.23a)

GD
α,β(r) = (1− 2δβ,z)

∂

∂rβ

(rα
r3

)
(1.23b)

GSD
α,β(r) = (1− 2δβ,z)

∂

∂rβ
GS
α,z(r) , (1.23c)

with α, β ∈ {‘x’, ‘y’, ‘z’} and r = (rx, ry, rz).

The power of the scaling of the hydrodynamic interaction in the presence of
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the wall is not obvious in the formulas above. To simplify the problem, one can

consider two particles separated by a distance r, both at a height h from the

surface. The coordinates of the particles can be written (0, 0, h) and (r, 0, h).

The x, x component of the Blake mobility matrix for the coupling between

the two particles is

(µB
1,2)x,x =

1

8πη

(
2

r
− 1

ρ
− r2 + 2h2

ρ3
+

6h2r2

ρ5

)
, (1.24)

with ρ =
√
r2 + 4h2. Close to the surface, when h � r, the coupling term

simplifies to

(µB
1,2)x,x ≈

3h2

2πηr3
. (1.25)

This coupling term decays in 1/r3. It has to be compared to the 1/r decay in

a bulk fluid (Oseen tensor). The hydrodynamic interaction between particles

is a rather short range interaction at the vicinity of a surface. When h → 0,

the coupling term also tends towards 0. This is expected, since the wall

constrains the fluid to have a zero velocity at the surface, which leads to a

vanishing coupling between the particles, as the motion of a single particle

cannot create a fluid flow as big as in a bulk fluid.

Towards the other limit, h� r, Eq. (1.24) leads to the mobility term

(µB
1,2)x,x ≈

1

4πηr
, (1.26)

which is the same as the x, x cross-mobility (H1,2)x,x of the Oseen tensor.

The Blake tensor above provides an accurate description of the hydrodynamic

interaction when the size of the particles is negligible compared to the spacing

between them and the distance from the wall.

1.8.3 Non-diagonal terms corrected for the size of the

particles

In the most general case, when the size of the particles a is not negligible

compared to ri,j or zi, the Blake tensor can be corrected for the beads radii.
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1.8. Blake tensor

In a derivation similar to the Rotne-Prager tensor, the Faxén theorem gives

[21, 24, 25]

µi,j =

(
1 +

a2

6
∇2

ri

)(
1 +

a2

6
∇2

rj

)
µB
i,j , (1.27)

for i 6= j. The expanded version of this formula is very heavy and is not

printed here. Section D.8 shows formulas for the x, x and y, y components of

the hydrodynamic coupling µ1,2 with the Blake tensor corrected for the beads

radii in a simple system of two beads, both at a height h from the surface,

and spaced by a distance r. The corresponding coupling terms µα,β1,1 /µ
α,β
1,2

are plotted as solid lines in Fig. 1.3 depending on h. Far from the wall, the

coupling term converges almost to the coupling given by the Oseen tensor

(dashed lines). The slight discrepancy at large h, almost not visible on the

graph, comes from the approximation in the Oseen tensor that particles act

like point-like Stokeslets.
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Figure 1.3: Hydrodynamic coupling 1/µα,β1,2 between two particles at
a height h from a planar surface. The coupling is renormalized by the
drag 1/µα,β1,1 . The solid lines represent the α, β = x, x (blue) and y, y
(green) components of the Blake mobility matrix corrected for the beads
sizes [Eq. (1.27)], while the dashed lines represent the Oseen tensor, that
does not take into account the wall. Parameters are a = 1.74 µm and
r = 25.4 µm.

33



1. HYDRODYNAMIC INTERACTION AT MICROMETRIC SCALES

1.9 Brownian motion

As a consequence of the small scales involved, small biological systems are

subject to Brownian motion. Thermal fluctuations on a spherical particle act

as a force f(t) that originates from the molecules of the fluid that hit the

particle. f(t) is in practice well approximated by white noise, that is written

[26] {
〈f(t)〉 = 0

〈f(t) · f(t′)〉 = 2ν γkBT δ(t− t′) ,
(1.28)

with γ = 6πηa, and ν ∈ {1, 2, 3} the dimension of the system.

Frequency-coloured noise (non white noise) has been observed as a

consequence of the interaction of particles with the fluid, introducing a

characteristic time scale τ = a2ρ/η [27, 28]. For typical colloids of size

a ∼ 1 µm in water (η = 1 mPa·s and ρ = 103 kg·m−3), τ ∼ 1 µs. This is well

below all the relevant characteristic time scales in micrometric oscillators in

biological fluids like cilia and flagella. White thermal noise is therefore always

assumed in this thesis.

In a system of several particles, this thermal fluctuating force has to be

included in the forces Fj of the mobility matrix in (1.14). It leads to coupled

terms of noise in the velocities vi [29, 30]. Thermal noise also induces rotation

of the particles and this rotation couples to the translation [31].
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Chapter 2

Cilia, flagella and model

oscillators

2.1 Introduction

This chapter reviews what cilia (and flagella) are, and the current models used

to understand their synchronization and collective behaviour. The first section

focuses on biological aspects and observations in cilia: how motile cilia work

and oscillate to perform their task of flow generation, and in particular, what

kind of synchronization can be seen. The second section presents simplified

models of oscillators, that have been introduced to understand the key features

of the collective behaviour from a few to big arrays of cilia. Most of these

models started to be studied before the beginning of this thesis by my group

and others. This was however done mainly in numerical simulations and/or

theory. It provided the motivations to realize these systems experimentally

during the course of this Ph.D., and to extend the models to discover new

features related to them.

Understanding how cilia work is useful in biology, to get a knowledge of the

full metabolic path from energy input to actual mechanical work performed

by the filaments, in medicine, to understand how malfunctioning cilia are

involved in pathologies [32], thus helping developing diagnostics of such
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2. CILIA, FLAGELLA AND MODEL OSCILLATORS

diseases [33, 34], and in microrheology to create flows in microfluidic devices

or even micro-robots [35].

2.2 Cilia and flagella

2.2.1 Swimmers at the micrometric scale

Cell locomotion and swimming of microorganisms play an important role in

the achievement of various biological tasks. Spermatozoa propel themselves

and travel a long distance up to the ovum [36]. Green algae such as Chlamy-

domonas reinhardtii or the marine Dunaliella salina swim to generate feeding

currents to help fetching nutrients, which would not be concentrated enough

is the organism was only relying diffusion [37, 38]. Moving towards a region,

depending on concentration gradients is called chemotaxis. Bacteria, such as

Escherichia coli also adapt their swimming according to gradients of nutrients,

such as glucose [39–41].

Other cells do not swim, but generate a fluid flow by staying anchored on a

surface [42]. These surface flows are essential in various physiological processes

including clearance of mucus in the airways [43], circulation of cerebrospinal

fluid in the brain [44], transport of ovules in the fallopian tube [45], breaking

of the left/right symmetry in the embryonic development [46–48]. . .

All these organisms are intensively studied, since many can now be accessed

experimentally, especially since improvements in the use of genetically

modified animals with fluorescently tagged proteins, imaging techniques

(phase contrast microscopy, SEM. . . ) [49] and manipulation techniques of

small objects (optical tweezers [50–52]).

2.2.2 Cilia and flagella

Interestingly, all the microorganisms or organs mentioned above use motile

cilia or flagella, that have embedded molecular motors and can generate a fluid
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flow. Cilia and flagella are long filaments extruding from the surface of the cell

(Fig. 2.1) that beat in a cyclic pattern. They are highly conserved organelles,

present in a wide range of eukaryotic and prokaryotic organisms [53, 54], which

suggest that they are very efficient in performing swimming at the micrometric

scale [55, 56].

Figure 2.1: Cilia and flagella in the living world. (a) Eukaryotic Chlamy-
domonas alga with two flagella. The alga is being held on a micropipette.
(b) Prokaryotic E. coli bacteria with four long helical flagella. (c) Dense
array of cilia in bronchiolar epithelium. (d) Bundle of tightly packed
sensorial stereocilia. Sources: (a) [57], courtesy of M. Polin, (b) [58], (c) [59]
and (d) [60].

2.2.2.1 In eukaryotic cells

Most eukaryotic cells are ciliated. However, many of them have non motile

cilia, also referred as primary cilia, in which case the cilia act as chemical

or mechanical sensors [61]. For example, primary cilia in the kidney can

detect urine flows (mechanical sensing), and chemical sensors in bones involve

primary cilia [62]. Primary cilia are also known to play a signalling role in the

development of vertebrate cells [63].
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Other cells have motile cilia, with the purpose of swimming or to generate a

flow. Mammalian sperm cells have a single 70 µm long flagellum attached to

the body, while the Chlamydomonas alga has two flagella, about 12 µm in

length [64]. In the dense arrays of cilia in the airways (2400 cilia·cm−2, [65]),

the filaments are much shorter: 7 µm in average for human airways [66].

While the length of cilia or flagella can vary significantly depending on the

system, the internal structure of both cilia and flagella in eukaryotic cells is

very conserved, leading to a fairly constant diameter of about 200 nm. In most

of the cases, when looking at a cross-section of a cilium, the internal structure

(axoneme) consists in 9 microtubules doublets arranged on a circle in primary

cilia, and 9 microtubules doublets in circle that surrounds two central single

tubules in motile cilia (Fig. 2.2) [54]. The two structures are often called “9

+ 0” and “9 + 2” respectively.

Figure 2.2: SEM image of the “9 + 2” structure of Chlamydomonas
flagella [67]. The picture shows a cross-section of two flagella. Each of them
is composed of 9 microtubules doublets encircling two single microtubules in
the centre. In primary cilia, the two central microtubules would be missing.

The microtubules doublets are responsible for the movement of motile cilia. In

a cilium or flagellum, each doublet is a pair of dynein arms that slide against

each other [36]. This causes the whole cilium to bend. The energy required

for the sliding is provided by ATP. The details of the motion of the filament

are still being debated [68, 69], but it is well known that the outcome of all

the activity from the molecular up to the single cilium level is an oscillating

filament. A typical cycle is shown in Fig. 2.3. In this cycle, the cilium starts

with a straight shape that changes its orientation, thus pushing the fluid. It

returns to its initial position curled up, in order to minimize the interaction

38



2.2. Cilia and flagella

with the fluid. The two parts of the cycle are called power and recovery

strokes [70]. In the power stroke, the cilium has a shape corresponding to

a high drag coefficient, while in the recovery stroke, the drag coefficient is

smaller. This asymmetry of the beating cycle makes the cycle non reciprocal,

as required to provide a net force on the fluid over a period in a low Reynolds

number environment (see Section 1.3). Cilia typically beat at a frequency

of 5 to 100 Hz [53]. In another possible beating cycle, found for example

in uniflagellar spermatozoa, a wave-like planar or helical pattern propagates

along the filament [36, 71], pushing the cell forward. This is somehow similar

to the S-shape slithering motion of snakes, although the problem is more

complex since the fluid is not immobile [9]. The details of the mechanisms at

work within a cilium have been modelled quantitatively [72, 73] and models

to reproduce the cycle of oscillation have been proposed [74, 75].

Figure 2.3: Evolution in time of the shape of a cilium. The cycle is made
of two parts: the power stroke, during which the cilium pushes the fluid,
and the recovery stroke, during which the cilium comes back to its initial
position.

In some cases, the origin of motility is still unclear. For example, stereocilia,

found in hair cells in the inner ear, as tight bundles of tens of cilia [Fig. 2.1(d)],

act as mechanical sensors that can detect and amplify oscillations. They

are therefore active elements, and they show indeed spontaneous oscillations

[76, 77], but the origin of their activity is unknown.

2.2.2.2 In prokaryotic cells

Bacterial flagella have a different structure and beating cycle than eukaryotic

flagella. For example, in the bacteria E. coli and Salmonella typhimurium,

the cell body, a cylinder of about 2 µm in length and 0.5 µm radius, is covered

by about 6 to 10 flagella, that extend up to 10 µm in length. Each flagellum

is made of a helical protein (flagellin) [78] and has a diameter of about 20 nm,

much smaller that eukaryotic flagella [79]. In this case, the cilia are not active
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on all their length: the filaments are fairly stiff and rotate only at their base,

where the active element is located (Mot complex). This results in a helical

pattern, that generates a flow [80] and can propel the bacteria at a speed up

to about 30 µm·s−1 [81].

2.2.3 Synchronization and collective behaviour

The understanding of the motion of cilia at the single cilium level, and the

interaction of the filament with the fluid provide very useful information on

the swimming of microorganisms. One hopes to conclude on what is the

force during a cilium cycle, what effect a time dependent perturbation would

have on the cilium dynamics, and what effect is expected from changes in

physical parameters such as the length of the cilium or the viscosity (or even

viscoelasticity) of the surrounding fluid. Single cilium experiments are being

carried out on various biological organisms, in particular the alga Chlamy-

domonas [64, 82] and sperm [83], which are both easily accessible with current

technology.

But it has been seen experimentally that cilia often display a cooperative

behaviour, such as synchronization. Hence, an understanding of the systems

at a multi-cilia level is necessary. This section presents some cooperative

behaviours on a few examples of cilia and flagella.

Synchronization is a common phenomenon in biology. Pacemaker cells in the

heart [84, 85] are synchronized through neuronal signals. Crickets sing in

unison [86], fireflies colonies synchronize their light emission by observing the

light emitted by the other members, while cultures of yeast cells can show

glycotic oscillations [87]. Synchronization always requires a coupling between

the oscillators of the system. In the case of cilia and flagella, hydrodynamic

coupling is obviously present (see Chapter 1), and hydrodynamics has already

been able to explain some of the collective properties that will be described

below. However, it cannot be ruled out that other communication pathways

could also help to synchronize. Inspired by known biological systems, other

common candidates for communication channels between cilia, are neuronal or

biochemical signals, in which each oscillator of the assembly would probably
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be synchronized to the same control signal [88], and quite importantly other

forms of mechanical coupling not mediated by the fluid.

Below are a few examples of organisms that illustrate various types of

cooperative behaviour.

2.2.3.1 Coordination of sperm cells

In the case of single-flagellated swimmers, like spermatozoa, hydrodynamic

cooperativity can arise between neighbouring swimmers. When two sperm

cells are brought close together, the flagella oscillate in synchrony [9, 89].

Furthermore, it was observed experimentally that, once synchronized, two

sperm cells tend to attract and stay together, by forming a tight cluster

(Fig. 2.4) [89]. Typically, it takes a few cycles for the two flagella to lock

their phase. This come from the stress that the viscous fluid applies on the

moving flagella [9, 89]. The attraction is weaker, as it takes more than a few

cycles to reach a state like in Fig. 2.4.

At a larger scale, sperm cells can synchronize and create vortices [90] that

involve each around 10 spermatozoa. Sperm cells also tend to swim close to

surfaces [91, 92], which might help them to travel longer distances than if the

motion was in 3d.

Figure 2.4: The flagella of two sperm cells brought close together beat in
synchrony and show an attraction of the filaments, leading to an aggregation
of the two cells.

2.2.3.2 Synchronization of the two flagella in Chlamydomonas

reinhardtii

The alga Chlamydomonas reinhardtii has been the object of numerous

experiments and studies. It can be easily handled experimentally, and

many mutants are available to tune several parameters (like making it
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uniflagellar) [54]. With only two flagella, it also makes it an ideal system

to develop simple physical models in order to understand swimming patterns.

In the wild type of Chlamydomonas, the two flagella spend most of their

time at doing a “breaststroke” motion (Fig. 2.5): the filaments are therefore

strongly locked. However, the swimming of the alga also includes short periods

of phase drifts during which the flagella oscillate asynchronously [57, 93].

Over long times, Chlamydomonas displays periods of long straight (or little

curved) trajectories alternating with short asynchronous periods [94] that

have for consequence the change of direction of the alga. This resulting

motion is called run-and-tumble, and is more often found in prokaryotes than

eukaryotes. A recent study [57] found consistency between this behaviour

of the two flagella and a generic model of two coupled noisy phase oscillators

with a coupling strength consistent with hydrodynamic interactions. However,

the mechanochemical aspects of ciliary synchronization are still not well

known, but there is growing evidence that mechanical coupling between the

flagella through the central cell body also plays a role in the emergence of

synchronization in the Chlamydomonas flagella [82, 95–97].

Figure 2.5: When synchronized, the flagella of Chlamydomonas beat in a
“breaststroke” fashion, pulling the cell forward (upwards direction on this
sketch).

2.2.3.3 Metachronal waves in Paramecium and Volvox

Paramecium and Volvox carteri are respectively unicellular and multicellular

organisms, a few hundreds of micrometers in size, and their outer surface is

covered with thousands of cilia [54, 98]. In the colonial alga Volvox, each of

the ciliated cells composing the carpet of filaments is biflagellated. These two

organisms show an interesting collective motion, in which the flagella do not

all beat with the same phase. Instead, two neighbouring flagella will keep a
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constant (usually small) phase difference [88]. When oscillating, this leads to

the formation of a propagating pattern called a metachronal wave that can

be seen at the surface of various cells or tissues [99–104]. This synchronized

state is similar to a Mexican wave in a stadium (Fig. 2.6), in which each

member of the crowd is almost in phase with its neighbours, leading to a

phase pattern propagating with a well defined velocity at a larger length scale.

In-phase synchronization and metachronal waves are believed to optimize the

flow generated by an assembly of cilia [55, 105].

1

Figure 2.6: A Mexican wave in a stadium is a cooperative behaviour
between individuals similar to metachronal waves in cilia [106].

2.2.3.4 Alignment of cilia in a carpet

Apart from synchronization, cilia also raise other interesting questions related

to cooperative behaviour. In particular, in the case of carpets of many cilia,

the collective motion in a metachronal wave, with cilia all beating in the same

direction, poses the question of how the direction is chosen, and how the

alignment of all the cilia beats (in a plane perpendicular to the surface of the

cells) emerges.

Cilia grow outwards from a structure called the basal body, which is anchored

to a cell’s cytoskeleton [107]. The basal body is itself generated from centrioles,

which are subcellular structures responsible for microtubular organization.
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Once fully grown, a cilium transverses the cell’s plasma membrane extending

typically several microns out of the cell body.

In mammalian cilia (in the brain ventricles, fallopian tubes, airways, etc.),

the cilia belong to multi-ciliated cells, and there are typically of order 200

cilia per cell; each cilium is separated by approximately 200 nm. The same is

true and has been explored in the outer surface of various “model” biological

organisms, such as the Paramecium [108] and the algae colony Volvox [109] as

well as developing embryos of mice [110, 111] and Xenopus frogs [112]. These

ciliated cells, together with mucus-producing cells (goblet cells, in mammals),

and ion-regulating cells, form a general tissue type known as muco-ciliary

epithelium.

In fully developed epithelial tissue, the direction of beating is well defined

relative to the organ, for example it is parallel to the trachea in mammalian

airways. This is essential for the generation of fluid flow, mucus clearance

away from the lungs in this case, which relies on coordinated beating of cilia to

produce transport-efficient metachronal waves [113], similarly to Paramecium

and Volvox in Section 2.2.3.3. An open question in developmental biology is to

find the rules and the cues that enable this fairly complex, and well organized

tissue, to be made. The first symmetry to be broken in the development of

vertebrates is the anterior/posterior. For example the planar cell polarity

(PCP) pathway sets the initial direction in a developmental stage of the

epithelium in Xenopus embryos, a tissue which includes multiciliate cells [114].

From this point on, there are gradients of a variety of biochemical elements

along this axis. Cells can be polarized, both in the intracellular protein

localization, and in their shape. This process happens before cilia-genesis,

and the standard view in biology is that the gradients in biochemical markers

control most, if not all, of the subsequent organ development. However,

once cilia are generated, they contribute to long-range flows, which can

transport chemical factors directionally, or act as a mechanical cue for

organization [115–118].

In the specific case of developing orientational cilia order in the airway tissue,

there is a hypothesis that flow-induced self organization might be important.

A fraction of the cells in the tissue that will develop into the airway epithelium
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express a few hundred centrioles, which become basal bodies and grow cilia.

At this stage, the cells themselves are already polarized (biochemically and in

shape) but the basal bodies when they first appear are not oriented. There

have been very recent studies suggesting that the network of microtubules

connecting the basal bodies could couple to the cell shape or to the emerging

tissue architecture, and possibly orient the cilia [119]. On the other hand,

the newly made cilia are exposed to a directional flow from the mucus being

produced by other cells. These cilia will also be exposed to the flow that they

themselves generate, i.e. they interact with each other through hydrodynamic

interaction forces [102]. The question of how are cilia aligned has also been

addressed looking at mouse brain ventricles [120], where it was shown that

cilia first dock apically with random orientations, and then reorient in a

common direction through a coupling between hydrodynamic forces and the

PCP protein Vangl2.

The evidence of the role of flows in determining the orientation of cilia is

therefore present in the experiments in the Xenopus larval skin [115, 121] and

in mouse brain ventricles [120]. However, there are only very few physical

models to explain this behaviour [122].

2.3 Model oscillators to describe the collec-

tive behaviour of cilia and flagella

Understanding the role of the hydrodynamic interaction in the synchronization

of cilia and flagella can be done by means of in vitro experimental observations,

or by working on simplified physical models that describe the beating pattern

of cilia. Since it is increasingly accepted that the hydrodynamic interaction

plays a key role in the synchronization of these systems systems [43, 102,

122, 123], the models should include that coupling. Other interactions, such

as mechanical, concentration gradients, or steric repulsion might also be

relevant [124].

Such models are often simple enough to carry out numerical simulations

or analytical calculations. Reducing the multiple degrees of freedom of
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the complex systems into a few control parameters which can be tuned

helps to understand theoretically the biological systems. It also makes it

easier to account for the hydrodynamic interaction. For example, sperm

flagella have been first modelled by a waving sheet [9, 125] or by a 2d

or 3d filament [126–128], in order to determine the fluid flow they create.

Experimental realizations of actuated filaments that can mimic the motion of

a cilium also exist, at the micrometric [21, 129, 130] and macroscopic [131]

scales.

With the recent possibility of performing computer simulations, it has become

very useful to coarse-grain the filaments in various systems. In a quite accurate

description, the filament can be replaced by a chain of spherical beads or

rods [21, 89, 91, 129, 132, 133] [Fig. 2.7(b)], for which the drag coefficients

are known. This can also be realized experimentally with magnetic particles

self-assembling in chains [21, 134–136]. These models are useful to study the

flow generated close to the filament and to obtain its shape during a beating

cycle.

To look at the synchronization between different cilia, an even more

coarse-grained model can be used. Since in the far field, the filament can

be seen as a point, it can be assumed that the fluid flow generated by the

cilium is the same as the one created by a moving sphere. Hence, a cilium can

be just modelled as a sphere [Fig. 2.7(c)]. Many recent models use this level

of coarse-graining [88, 95, 137–164]. This greatly simplifies the calculation of

drag forces, both those acting on the individual object, and the force induced

by one object on another. With the single sphere, the shape of the cycle that

the oscillating bead is undergoing has to be inputted manually in the model.

Also, when designing a single-sphere oscillator to look at the synchronization

properties, one requirement is that each oscillator must have a free phase.

Having a free phase means that the oscillator is not driven with an imposed

phase or fixed frequency. The phase should be able to drift because of external

forces like hydrodynamic coupling and thermal noise.

In this section is a short presentation of the two single sphere models of a cilium

that were used in this thesis and that are suitable to study synchronization.

For a review describing also other models, see [18]. The section here contains
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the key references required to understand the context in which I worked. Many

research groups are actively studying these systems, in particular in theory

and simulations; their results are summarized here.

The simplicity of the models allows to understand the processes that

lead to synchronization. It also helps finding the relevant parameters

that control the states of synchronization and to compare with the states

obtained in biological systems: phase locked, metachronal wave, not

synchronized. . . Experimentally, the single-sphere model can be realized by

using colloidal particles driven by optical tweezers.

Figure 2.7: In a coarse-grained approach, a single cilium (a) can be
modelled by a chain of spherical colloidal particles (b), or even by a single
bead (c). Typically, the bead position in (c) would be at the centre of mass
of the filament it is modelling. This retains the same far field hydrodynamic
flows.

2.3.1 Oscillators moving along orbits: rotors

2.3.1.1 Basic model

When a cilium beats, its centre of mass moves along a given orbit that can

be a 2d or 3d path. A way to model a cilium is to prescribe an orbit for

the particle. With φ the phase of the oscillator, the orbit is described by its

shape r(φ) and the driving force acting on the particle F (φ), that represents

the force provided by the cilium, in the direction tangent to the path at φ, as

shown on Fig. 2.8.

In order to generate a net flow, the trajectory can be tilted and close to a

surface, so that the drag coefficient changes during the cycle because of the
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Figure 2.8: Colloidal rotor. A cilium is modelled by a spherical particle
driven along a path r(φ) with a tangential force F (φ).

variable height from the wall (see Section 1.8.1 in Chapter 1). This idea of the

possible importance of wall effects in the flows generated by cilia and flagella

was already emphasized by Blake [165].

An important comment on this model is that the centre of an oscillator is

held at a fixed position, compared to the fluid at rest far from the oscillator.

This assumption is verified in biological systems such as in the bronchiolar

epithelium, where the cilia are all thethered to a surface at rest. In the case

of swimmers like Chlamydomonas, the anchoring surface moves and rotates

constantly because of the motion of the flagella. The global motion of the

body comprises an average displacement and rotation after a cycle, but also

variations within a cycle. Since in these real systems the average effect is a

consequence of the flow generated by the swimmer, including a correction to

the model for that behaviour would require first to use rotors that generate

a flow, and second to modify the model in a way such that the rotors might

not keep a constant position and orientation. The fluctuations within a cycle

are however still present even in oscillators that do not generate a net motion.

Since this thesis focuses on synchronization and not swimming, only oscillators

that do not generate any net flow are considered, and the aspect mentioned

above is neglected. When comparing the states of synchronization found in

this thesis to the states of real systems, one should keep in mind that the

swimming of the system can change synchronization properties.
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2.3.1.2 Golestanian model for synchronization

In [137], Vilfan and Jülicher showed with numerical simulations that two

beads driven on elliptical, and tilted trajectories near a wall can synchronize,

with the state controlled by the relative position of the orbits. In this case,

synchronization comes from the hydrodynamic coupling between the two

oscillators that allows the particle to move faster or slower on its trajectory

than if it was just pulled by its driving force. This way of synchronization was

later addressed by Uchida and Golestanian that derived generic conditions for

synchronization [142, 143]. They applied their conditions to the particular

cases of circular r(φ) = r0êr(φ), elliptical, and linear r(φ) = r(φ)êx

trajectories, with and without a wall. In the case of the circular trajectories

(Fig. 2.9), they proved by stability analyzis that, in an infinite fluid, a constant

driving force F (φ) = F0 would not generate synchronization, while a force

profile of the form

F (φ) = F0[1− A2 sin(2φ)] , (2.1)

with A2 ∈ [0, 1] provides optimal (strongest) synchronization.

More recently, this model was used by Golestanian and Bennett to study

the synchronization of Chlamydomonas in simulations: Two colloidal rotors

were maintained close to a third sphere that is modelling the cell body. In

the presence of noise, this model showed a run-and-tumble behaviour [144],

similar to the actual alga. The synchronized states and their stability have

also been studied without noise, depending on the choice of the driving force

profile [145].

2.3.1.3 Lenz model for synchronization

Another way to build a synchronized state in orbiting particles modelling cilia

is to add flexibility in their trajectories. That means that instead of following

exactly the trajectory set by the path r(φ), the particles can deviate from their

orbits, for example because of the coupling with other particles. To stay close

to the predefined path, a restoring force is added and tends to pull the particle

back to the track. The restoring force can, to the lowest order, be described by
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spring constant. This idea of synchronization through flexibility of the system

also exists in the problems of phase-locking and bundling of the helical flagella

in E. coli [17, 166] and was also observed experimentally in a system of two

paddles [167]. Flexibility might have a leading role in the synchronization of

flagella [168]. In the case of the spherical particles driven along circular orbits

with a constant force, Niedermayer, Eckhardt and Lenz determined the state

of synchronization and strength [88]. For two beads (Fig. 2.10), they found

that the decay rate of the phase, that converges to the synchronized state (in

phase), is proportional to the inverse of the spring constant kr that tends to

maintain the beads on the circles. In long chains of oscillators, they also saw

in simulations metachronal waves in both cases of periodic and free boundary

conditions at the ends of the chain.

Figure 2.9: Golestanian model. Each of the two oscillators shown here is
a bead driven along a circular trajectory. Depending on the choice of the
driving force profile F (φ), the oscillators can synchronize more or less. The
system does not synchronize is F (φ) = F0 = cnst.

Figure 2.10: Lenz model. The driving force is constant, but the beads
can deviate from the circular trajectory, because of flexibility introduced in
the orbit. The stiffness of the spring that acts in the radial direction, kr, is
a parameter of the oscillators.
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2.3.2 Two-state oscillators: rowers

2.3.2.1 The model

In the previous rotor model, in order to drive the particle along the orbit, the

position (more precisely, the phase) of the particle needs to be known so that

the direction and amplitude of the force can be set to the wanted value. This

model requires to update the force continuously. Another model, called rower,

performs such an update of the driving potential only two times every cycle.

In this case, the particle is driven back and forth in 1d by two potential UL(x)

and UR(x), respectively pulling the bead to the left and to the right. Fig. 2.11

shows an example with harmonic potentials, that can be implemented with

optical tweezers with traps centred to the left and right of the oscillator. A

rule needs to be applied to switch the potential from UL(x) and UR(x) and vice

versa, in such way that the oscillator has a free phase. In the rowers model

introduced by Cosentino Lagomarsino in [153], the traps are switched when

the bead comes closer than a given distance ς from the centre of the active

trap (black dashed lines in Fig. 2.11). This rule is called a geometric switch

and leads to oscillations with a constant amplitude, A, that depends on both

the distance between the centres of the traps λ and ς: A = λ − 2ς. Because

the instants at which the potentials are switching depend on the position of

the particle, it is an oscillator with a free phase.

Compared to the rotors model, the driving force is discontinuous, because of

the switching rule. It is fair to say that it is still an open question which of

these models represents better the internal degrees of freedom of a cilium, and

work is under way to elucidate commonalities and differences in the collective

dynamics. Driving forces extracted from tracks of a biological cilium during

a cycle are quite smooth, suggesting that rotors could well describe cilia. But

the asymmetric beating cycle (power and recovery stroke) suggests that an

internal two-state feedback system could be driving real cilia.

It is harder to implement rowers than rotors in a way such that they generate a

net fluid flow, as the bead is going back and forth on the same path. Swimmers

or micropumps in which the traps are switched with a known frequency (hence
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no free phase oscillators), were however realized experimentally by Cicuta et

al. [148, 149] with two or three beads (some of them being in static traps),

based on model swimmers proposed in [139, 169–171].

Like for rotors, the centre of the rowers are maintained at constant positions.

Care should be taken when comparing the synchronized states obtained with

such rowers with states of biological swimmers.

Figure 2.11: Rower model. Two driving potentials UL(x) and UR(x)
(harmonic in this sketch) are switched on and off alternatively to drive the
particle back and forth along the x direction. If the bead is on the right
side and the potential UL is on, the bead will move to the left. When it
reaches a distance ς from the centre of the UL potential, the potential UL is
switched off and UR is switched on. The bead then moves to the right, and
a symmetric switching rule is applied: The traps switch back to UL when
the bead is at a distance ς from the centre of UR.

2.3.2.2 Synchronization of rowers

Rowers started to be studied in simulations and experimentally before the

beginning of my Ph.D. It displays very interesting coupled dynamics. For

two oscillators coupled through the fluid, (for which the interaction can

be described by the Oseen tensor), synchronization occurs in antiphase for

harmonic driving forces and if the beads are close enough [147]. For beads

far away, synchronization is lost because of thermal noise that adds random

fluctuations in the phase difference between the two oscillators. As well as

imposing a threshold on the coupling strength for synchronization, thermal
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noise was shown to induce distinct cross-particle phase correlations.

The shape of the driving potential also affects the state of synchronization.

Wollin and Stark showed this in the geometry of a linear chain of oscillators

studied numerically in the absence of noise [146]. For two driven particles, the

curvature of the potential determines the stable synchronized state: in-phase

or in antiphase [146, 154].

Metachronal waves have also been reported numerically and analytically in

chains of rowers [146, 153].
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Chapter 3

Materials and methods

3.1 Introduction

The rowers and rotors are implemented both experimentally and in

simulations. The first section provides the experimental details on the

preparation of the samples and on the two tweezers setups that were used. The

tweezers were build and are maintained by Jurij Kotar. They are relatively

unique, as they allow to control the traps depending on the position of the

particles. This is required to create active oscillators, as they need controlled

forces on the particles. The second section describes the numerical methods

used in the simulations.

3.2 Optical tweezers setups

3.2.1 Sample preparation

Samples are diluted solutions of spherical, silica (density = 2.0 g/cm3,

refractive index ≈ 1.45), non functionalized (SiOH free ends), monodisperse

colloidal beads from Bangs Laboratories (cat. no SS05N, [172]). For the

results presented in this report, unless specified otherwise, the diameter of the
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particles is 3.47 µm. Particles of this size and density sediment in the solutions

prepared below. The initial aqueous colloidal solution (≈ 10 % of colloids in

mass) is diluted to 10−3 to 10−5 (in volume) in a water/glycerol solution

(deionized water, and Fisher, Analyzis Grade glycerol). The fraction of

glycerol in the solution is chosen depending on the wanted viscosity, according

to a look-up table [173]. Viscosities can be varied between 1 (pure water) to

8 mPa·s. Above 8 mPa·s, the refractive index of the solution becomes too

close to the index of the particles, reducing dramatically the trapping force

and the contrast of the image.

Sealed microscope slides are created to be usable in the tweezers setup. The

thickness of the solution on the slide is approximately 150 µm and most of the

experiments were performed at a height (of the focal plane from the surface)

of 75 µm, in order to limit any interaction with the glass surfaces.

3.2.2 First setup

Two optical tweezers setups were used in this work. In the first, a custom-built

inverted microscope focalizes an IR laser beam (from an Ytterbium fiber laser,

IPG Photonics, PYL-1-1064-LP, wavelength = 1.064 µm) in the same focal

plane as the imaging plane. The laser beam goes first through a set of lenses,

mirrors and acousto-optic deflectors (AOD, AA.DTS.XY-250@1064, from AA

Opto-Electronic) see Fig. 3.1, before being focalized by a water-immersion

objective (Zeiss Achroplan IR, 63x, NA = 0.90). All the optical elements

before the objective are enclosed and do not need frequent realignments. The

AODs allow to move the (x, y) position of the beam in the focal plane with a

subnanometric precision at a refreshing rate of 20 kHz. The sample is placed

on a 3d translation stage that allows to move it with micrometric precision.

The maximum possible laser power just after the objective is about 0.3 W.

The image of the focal plane is projected on a Marlin F131B CMOS camera

from Allied Vision Technologies that receives the light going through the

dichroic mirror (see Fig. 3.1).

A C program on a computer running a Linux (Fedora) distribution controls,
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through a USB connection, a custom-build electronics that controls the state

of the AODs. The computer itself also controls the motorized stage and the

laser.

With only one laser beam (TEM00), this setup allows to create, by scanning,

several harmonic optical traps at different positions (x, y) and with different

intensities. When the scanning period is fast compared to the characteristic

time scales in an experiment where colloids are trapped and driven, it can

be considered that the sample is illuminated with several beams of constant

intensity, thus enabling, the possibility to trap several beads. The power of the

laser is shared between all the harmonic traps, limiting the number of beads

that can be trapped in 3d to about 10, with the colloids samples described in

Section 3.2.1.

The traps can be created and controlled (position, intensity, on-off state) with

the mouse on the video image of the sample, or with XML scripts when the

number of traps becomes important and when they need to be at well defined

positions. The XML scripts and the program interface, make the setup very

versatile. With little training, new users can start simple tweezing experiments

without having to learn how all the setup works.

Figure 3.1: First optical tweezers setup. An infrared laser beam is
expanded, deflected by AODs, and passes through a water immersion
objective and the sample to trap the colloids. The sample is observed
by illuminating it with white light. After passing the sample, and the
objective, the imaging light is separated from the laser beam by a dichroic
mirror, and imaged on a CMOS camera.
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Rowers (experiments in Part III) were realized on this setup.

3.2.3 Second setup

The second setup is an upgrade of the first optical tweezers, that became

available towards the midpoint of my Ph.D. The main difference is that

it is mounted on a commercial microscope (Nikon inverted Eclipse Ti-E

microscope). It uses a water-immersion objective (Nikon Plan Apo VC 60x,

NA = 1.20), and the laser is a diode-pumped solid-state laser (CrystaLaser

IRCL-2W-1064 with wavelength of 1.064 µm). The commercial microscope

brings a lot of advantages, particulary relevant to the observation of biological

systems: The image quality is better, it is easy to add elements on the optical

path, enabling with ease fluorescence and phase contrast microscopy, and

the transmitted light can be easily directed to various cameras (AVT Marlin

F131B CMOS camera for the experiments in this thesis). The downside is that

some elements are quite loosely attached to the skeleton of the microscope.

In particular, the frame of reference of the camera can move relatively to the

frame of the trap positions (AODs’ frame) during a few hours long experiment.

It was also observed that the two frames cannot be superposed by simple

translation, because of optical aberrations. Experiments that are sensitive to

the relative position of the two frames (like rotors) require a calibration of the

frames. This is done by measuring the position of a bead in the camera frame

for different x and y positions of a trap (typically on a 20×20 grid covering the

63 µm-sized square area of available trap positions). The position-dependent

discrepancy between the measured bead position and the trap centre in used

to generate a calibration table to match the two frames.

This setup also has a better control of the intensity of the traps, hence the trap

stiffnesses. First, the parameter controlling the intensity of a trap, called gain,

was, in the first setup, linear with the power on the piezo-electric elements

of the AODs. But this power is not proportional to the intensity of the

first diffraction mode at the output of the AODs. On the second tweezers, a

calibration curve can be measured by scanning the gain and measuring the

intensity after the AODs. It is then used to linearize the gain parameter

such that it becomes proportional to the measured intensities. Second, when
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changing the position of the trap (by changing the driving frequency of

the AODs), the intensity can also vary. Similarly to the gain linearization,

measuring the intensity in a grid of x and y positions of the trap allows to

make the intensity become independent on the position (field flattening).

The setup is also improved for better real-time feedback (see Section 3.2.6). A

high speed USB interface is used, and the program controlling the setup runs

with a higher priority on the operating system than in the previous setup.

Rotors (experiments in Part IV) were implemented on this setup, taking

advantage of the improvements mentioned above.

3.2.4 Customized potential landscapes

A single Gaussian beam (waist∼ 1 µm) leads to a harmonic trapping potential,

at least close to the centre of the beam. Other potentials were realized to

drive rowers and rotors. The aim is to build a customized potential shape

in one dimension, with a strong confinement in the other directions. Since

the force from the tweezers on the particle is proportional to the gradient of

laser intensity, custom laser gradients need to be built. In this thesis, AODs

are used to create potentials landscapes, but other methods like holographic

optical tweezers could also be used [174–177].

The tweezers allow to put a large number of traps at different positions. One

single harmonic trap (referred as simple trap) is used as a “pixel” characterized

by its intensity. By arranging several traps along a line it is possible to create

various intensity profiles (see Fig. 3.2). As the force felt by a colloidal particle

in this field is proportional to the gradient of intensity, this method creates

an arbitrary potential landscape. The ensemble of simple traps constituting

the landscape is called a complex trap.

The implementation of complex trap landscapes requires to satisfy some

constraints. On one hand, the distance between two harmonic traps (two

“pixels”) has to be small compared to the waist, so the landscape appears

smooth for the particle [Fig. 3.2(b)]. On the other hand, the number of traps

should not be too large, as it increases the time to scan all the positions with
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Figure 3.2: Schematic of complex potential landscapes. By placing
several traps with different intensities along the x axis, various potentials
can be created. The sketch represents the focal plane with the red
shadings being the laser intensity. The corresponding potentials are plotted
qualitatively in blue. (a) shows six simple traps with an intensity that
decreases when x increases. Each dot is a harmonic potential (Gaussian
beam) and appears as local minimum on the potential curve. When the
density of the simple traps is doubled [12 traps, in (b)], such that the
spacing between the traps is less than the waist, the traps overlap and
create a gradient of intensity, thus building a potential corresponding to a
smooth potential that would drive the bead towards small x. The region
of interest of the custom landscape is the solid part of the curve, the shape
of which can be tuned by changing the intensities of each simple trap.

the laser beam. More precisely, the scanning period of all the traps has to

be much lower than all the characteristic times of the system studied. In

fact, to limit further the effect of scanning, the traps are scanned in a random

sequence within a potential landscape.

Complex trap landscapes are used in two contexts in this thesis: in the rowers,

to change the curvature of the driving potentials, and in rotors to explore a

range of low radial spring constants (high flexibility).

3.2.5 Image analyzis

The pictures from the camera are analyzed to obtain the position of the

particles. Since the colloids are very uniform in size, diluted, and stay close
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to the focal plane when trapped, their shape on the picture is the same from

one colloid to the other. The position of a colloid is measured by maximizing

the 2d cross-correlation function

f(i1, j1) =
∑
i,j

I(i, j) I0(i− i1, j − j1) , (3.1)

where (i, j) are pixel coordinates, I(i, j) is the intensity of the image to

analyze, and I0(i, j) is a bead profile. A bead profile is a typical intensity

pattern of a colloid centred on (0, 0). Two kinds of bead profiles with rotational

symmetry were used:

• A profile made of two or three dark/bright rings. The profile is

determined on a base image of a colloid by estimating manually the

rings radii and intensities.

• An angle-average I0(r) radial profile converted into the I0(i, j) cartesian

function. It is computed by a Matlab script that only requires to input

a base image of the colloid, and the position of the centre of the colloid.

Figure 3.3: Determination of the position of a particle (3.47 µm diameter
silica particle in an η = 6 mPa·s water/glycerol solution). (a) Camera
image of a colloid. A region (red rectangle) is defined around the particle
to localize. The region is centred to the position of the particle found in the
previous frame, or set manually for the first frame. (b) A correlation filter
is applied inside the region. The bead profile used in the filter is defined as
a 35 px × 35 px intensity matrix so that the function f in Eq. (3.1) can be
estimated in an area inside the red rectangle cropped by 17 pixels on each
side. In that region, the greyscale shows the value of f , with white colour
representing high values of f . (c) Zoom on the maximum of f in (b). The
centre of the particle (blue cross) is determined with subpixel resolution by
fitting a 2d parabola around the pixel with maximal f .
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f(i1, j1) is maximized by fitting a 2d parabola close to the maximum (typically

using the data points within a radius of 1.5 pixels of the maximum of f), thus

obtaining a maximum at (i0, j0) with subpixel resolution, see Fig. 3.3 (i0 and j0

are scalars, in pixel units: 1 px = 0.093 µm in the first setup, 1 px = 0.11 µm in

the second setup). The precision of the particle position can be down to about

10 nm. However, optical aberrations and fluctuations of the particles along z

reduce the precision by introducing systematic errors. f is only maximized in

a small region in which the particle is believed to be. When analyzing a movie

frame, this region is simply centred to the measured particle position in the

previous frame. The analyze of the first image requires to select manually a

region around each of the particles.

The two setups are able to record movies that contain a sequence of camera

images and trap states. Such movies can be analyzed after the experiment.

The second setup was also able to directly record the position of the beads

(when analyzed in real time) and the traps, without having to record a movie.

In any case, the data of an experiment consists in files containing the positions

of the particles depending on time, recorded at the rate of the camera, and

the state of the traps.

3.2.6 Real-time image analyzis and traps update

A feedback loop can analyze in real time the position of the beads and send

commands to the electronics that controls the traps’ positions (Fig. 3.4). The

image analyzis is done on the computer at the rate of the camera (typically

between 100 and 400 frames per second). This allows a lot of flexibility in

the rules, written in C language, that can be used to update the position

of the traps. In particular, rotors and rowers, as described in Chapter 2

(Sections 2.3.1 and 2.3.2) can be implemented.

Specific details of each of the implementations are provided in Parts III and

IV, in the relevant chapters.
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Figure 3.4: Feedback loop in the tweezers. The camera first takes a
picture of the system (trapped colloids). It is sent to the computer to
analyze the position of the particles and apply a feedback rule to decide
where to put the traps. The command to change the states of the traps
is sent through USB to the AODs controller. It generates the RF signals
that drive the AODs to apply the desired traps on the system. The whole
cycle takes about 6.5 ms. The major delay comes from the transmission
through the USB cables and the computer processing time. This loop is
also characterized by a second time: the frame rate of the camera, which
defines the refreshing rate of the traps.

3.2.7 Example: V-shaped potential

Here is an illustration of a combined use of potential landscapes and a feedback

loop. The aim is to create a potential of the form U(x) = k|x| to study the

fluctuations of a colloid trapped in the minimum at x = 0. A naive idea would

be to create a trap landscape with 2N simple traps equally spaced of the form

g(i) = k′(N − |i|) , (3.2)

with i ∈ {−N, ..., N − 1} the trap index, g the gain and k′ a constant.

Although the function g has an inverted “V” shape with a sharp maximum

(discontinuous derivative at x = 0), the corresponding intensity gradient

would also be an inverted “V”, but smooth near the maximum, because of the

averaging effect due to the size of the waist. The potential would therefore

also be smooth.

To overcome this problem, and have a sharp potential in the range of thermal

fluctuations of the particle, a solution is to use two linear gain profiles:

gL(i) = k′L(N + i) (3.3)
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and

gR(i) = k′R(N − i) . (3.4)

These profiles lead to a constant force FL < 0 for gL and FR > 0 for gR [which

respective potentials are UL(x) and UR(x)]. An exact “V” potential can be

obtained by applying the potential UL if the bead is at a position corresponding

to x > 0, and the landscape UR if x < 0 (see Fig. 3.5). This switching

rule, is implemented as a feedback loop in the setup, and the corresponding

experimental potential is shown in Fig. 3.6. The potential is calculated by

measuring the probability density function P(x) of the particle. The potential

is deduced from Boltzmann statistics through the relation

P(x) ∝ exp

(
−U(x)

kBT

)
, (3.5)

with kB the Boltzmann constant and T the ambient temperature. In Fig. 3.6,

the minimum shows two portions of lines, except in a small region near the

minimum of about 0.1 µm width, where it is smooth. This region is still much

smaller than the waist. It differs from the perfect sharp “V” shape, because of

the feedback time (363 frames per second) and the delay in updating the traps:

When the bead passes the centre, the switch of the potentials is retarded,

leading to the wrong linear potential (UL or UR) being applied for a short

time.

Figure 3.5: Implementation of a V-shaped potential. Two linear
potentials UL and UL are used. Both are defined to the left and right
of x = 0 (solid and dashed lines), but UL is activated when x > 0 only and
UR is activated when x < 0 only. The resulting potential is the red and
blue solid line.
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Figure 3.6: V-shaped potential obtained by using two sloppy potentials
UL and UR, as shown in Fig. 3.5. The duration of the experiment is 1 hour.

3.3 Numerical simulations

3.3.1 Ermak McCammon algorithm

The simulations in this thesis were carried out with a Brownian dynamics

algorithm developed by Ermak and McCammon. It provides a numerically

fast way to integrate the equations of motion of N interacting particles, with

hydrodynamically coupled Brownian fluctuations.

For a system of N particles, with velocities vn and positions rn (in two

dimensions, n ∈ {1, . . . , 2N}, as each bead has an x and y component), the

coupled equations of motion are [178]:

2N∑
m=1

µn,mvm = Fn +
2N∑
m=1

D1/2
n,mfm . (3.6)

Here, inertia is neglected, so that the equation of motion is just a balance of the

driving force Fn, the hydrodynamic coupling force (left-hand side, introducing

a mobility matrix µ) and a hydrodynamically coupled noise term. The latter
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is written as a product of a white noise variable characterized by{
〈fn(t)〉 = 0

〈fn(t)fm(t′)〉 = δn,mδ(t
′ − t)

(3.7)

and a coupling matrix D1/2 that satisfies

(
D1/2

)2
= D = kBTµ . (3.8)

D is called the diffusion matrix.

In the Ermak McCammon algorithm, Eq. (3.6) is integrated to obtain rn(t+

∆t) depending on rn(t), with ∆t a small time step [178]:

rn(t+∆t) = rn(t)+
2N∑
m=1

∂Dn,m(t)

∂rm
∆t+

2N∑
m=1

Dn,m(t)Fm(t)

kBT
∆t+Rn(∆t) , (3.9)

with Rn(∆t) a multi-variate Gaussian distribution satisfying{
〈Rn(∆t)〉 = 0

〈Rn(∆t)Rm(∆t)〉 = 2Dn,m∆t
. (3.10)

When the mobility matrix is the Oseen or the Rotne-Prager tensor,

2N∑
m=1

∂Dn,m(t)

∂rm
∆t = 0 , (3.11)

so that Eq. (3.9) simplifies to

rn(t+ ∆t) = rn(t) +
2N∑
m=1

Dn,m(t)Fm(t)

kBT
∆t+Rn(∆t) . (3.12)

3.3.2 Program

The C++ simulation program was initially written by a master student

in 2010, Löıc Damet [179]. It is solving Eq. (3.12) by using a Cholesky

decomposition of the diffusion matrix to calculate efficiently the noise Rn(∆t)
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(GNU scientific library GSL). It was initially able to simulate N rowers in

a chain or a ring configuration with the Oseen and Rotne-Prager tensors.

Updated versions have been used to simulate the other systems in this thesis,

by changing the driving forces and switching rules of the traps.

The program output is made of text data files containing the positions of the

particles and the optical traps depending on time. These files can be analyzed

the same way as experimental data files.
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Synchronization of two-state

rowers
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Chapter 4

Effect of the noise on the

synchronization of a single

colloid

4.1 Introduction

In this chapter, a two-state rower is realized experimentally, with intrinsic

dynamics defined by linear potentials that undergo configuration-coupled

transitions. It is also externally driven by a piece-wise constant periodic

force of varying amplitude and frequency. This elementary example of

“active matter” has the minimal elements that allow to study synchronization

in presence of thermal fluctuations and of a possible mismatch in natural

frequency between driving force and oscillator. Experiments reveal the

presence of synchronized states (and Arnol’d tongues), when the clock period

is close to the natural period of the phase oscillator which is explained using

analytical and numerical calculations. The system maintains synchronization

over different clock periods by adjusting the phase between the bead and the

clock. The relevance of this model to synchronization in real-world systems,

ciliary and general micro-motor systems, is discussed, including the role of

thermal noise.
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Synchronization problems in biological active systems are two-fold. It involves

how the internal degrees of freedom are coupled to the external perturbations

arising from the other active elements, and the effects of thermal fluctuations.

Thermal noise is relevant given the length scales and typical coupling forces

involved in cilia and flagella [57, 93]. Despite a few existing computational

studies [57, 147, 180], the role of noise in these systems remains largely to be

addressed. In order to do so, the rower model is used as an active oscillator

to focus on the role of the geometric switch mechanics in synchronization.

The setting is further simplified to address the response of a single two-state

oscillator with linear potential to an external periodic force. This allows a

deeper quantitative understanding of the synchronization properties and the

role of noise in the experiment. The results have relevance for the wider field

of synchronizing systems, where few controlled experiments exist.

4.2 Model of externally perturbed rower

In the experiment, a complex trap landscape is used to create a potential

energy landscape which is linear in one direction. This allows to apply a

constant force F to an overdamped particle. In the absence of noise a bead

of radius a would be driven at a constant velocity v = F/γ, with γ = 6πηa

and η the viscosity. The oscillation cycle of the perturbed rower is built from

piece-wise constant slopes [Fig. 4.1(a)]. The main driving force Fd is applied

to the particle (blue arrows). At the geometric boundary, represented by a

blue dashed line in Fig. 4.1(a), this force is switched to its opposite, so that the

particle is pushed the opposite way. The internal drive state is represented by

a discrete variable σd = ±1. Such an oscillator is a rower driven by piece-wise

constant forces.

On top of this driven motion, in which the switch of potential is determined

at the first-passage condition of the particle, an external perturbing “clock”

signal is superposed, the period of which is set externally [green arrows in

Fig. 4.1(a)]. The clock is realized itself as a time-variable tilt in the linear

potential constructed by time-shared traps. It applies on the bead a weak

force Fc that is also constant, and either strengthens or weakens the basic
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Figure 4.1: A colloidal bead is driven with a combination of a
fixed-period piece-wise-constant force (the “clock”) and a linear potential
with configuration-coupled switching. (a) Scheme of the experiment. The
blue arrows represent the force arising from the internal potential and
the green arrows the clock. Both are realized with time-shared optical
tweezers (red shades). Blue dashed lines are the switching positions, used
to determine the state of the internal driving force. (b) Mechanical analogy
with an overdamped ferromagnetic bead falling in an infinite set of slides
and subject to a piece-wise constant oscillating magnetic field gradient. (c)
Oscillations from one experimental track (black). Experimental parameters
are A = 4.66 µm, v = 3.91 µm/s, ε = 0.5 and Tc = Td = 2.38 s.

drive, depending on the clock state, which can be parameterized by a discrete

variable σc = ±1. Therefore, at any time, the particle feels a force σdFd+σcFc,

with the switches of σd and σc determined according to the geometric condition

and the clock ticks. Experimentally, the total force is controlled by a computer

that analyzes the position of the bead to get σd and uses its internal clock to

get σc, and apply one of the four potential landscapes corresponding to the four

possible total driving forces ±Fc ± Fd. Experiments were performed at room

temperature (296 K) in water-glycerol solutions of viscosity 2.2 mPa·s, with

spherical silica beads of radius a = 1.74 µm. Each linear potential landscape

is made of 62 simple traps.
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4.3 State of the system

4.3.1 Fixed point without thermal noise

The geometric switch condition, which sets the amplitude of oscillations to A,

is analogous to a bead driven by gravity and falling through a system of tilted

linear slides, in a high-viscosity environment [Fig. 4.1(b)]. In this analogy,

the external clock provides a modulating force in the right or left directions,

or changes the tilt of the slides at fixed time intervals. Thus the equation of

motion is

ẋ = v[σd(t) + εσc(t)] + ζ(t) (4.1)

where εv = Fc/γ and ζ is thermal (Gaussian, white) noise.

Let us consider first a clock of period Tc = 2A/v, thus equal to the natural

period of the oscillator Td. The experimental trajectories of the colloidal

particle position show synchronization with the clock state as a function of

time [Fig. 4.1(c)]. The synchronized state is such that the configurational

switches occur at mid-points between two clock switches. The existence of

this synchronized state can be easily understood considering the system in

absence of noise. Supposing we start from the position r immediately after

a clock switch [Fig. 4.1(a)], and the clock is coherent with the internal state

(σc = σd = 1). The time to the first geometric switch will be

t1 =
A− r
v(1 + ε)

. (4.2)

Subsequently, σd = −1, and the clock will contrast the internal state for a

time t2 = Tc/2− t1, during which the rower will reach the position

r′ = κ(Aε+ r) (4.3)

with

κ =
1− ε
1 + ε

. (4.4)

The remaining half of the cycle will follow an identical dynamics by symmetry,
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Figure 4.2: Comparison of experiments, simulations and theory for the
mean delay t1 between a geometric switch and a clock switch for Tc =
Td. Experiments (blue ◦, M and * markers) and simulations including an
adjustment for the bead size and delays in traps switches (green ×) agree
and simulations without any correction (red +) fit perfectly the theoretical
formula for the fixed point (solid red line). The dependence of t1 with three
parameters has been explored: (a) the amplitude A, (b) the mean velocity
v and (c) the strength of the perturbation ε. The theoretical dependence
always corresponds to a constant phase equal to 1/4. While one parameter
is varying, the others are fixed to the following values: a = 4.66 µm, v =
3.91 µm/s and ε = 0.1.

leading to the following fixed point:

rfp =
(1− ε)A

2
. (4.5)

This fixed point indicates the position where the particle will be found after a

clock switch in the synchronized state. It can be substituted to r in Eq. (4.2),

to obtain t1, and the three other time differences ti between consecutive clock

switches and geometric switches. These are all equal to Tc/4. In other words,

the system always puts itself at a phase difference

φfp
1 =

tfp1
Tc

=
1

4
(4.6)

between oscillator and clock.

The experimental results agree well with these predictions (see Fig. 4.2).

The small (5 to 10 %) deviations can be understood as byproducts firstly

of the finite image-analyzis time and secondly of the uncertainty in the

bead radius used in the experiment. First, the rate at which images are
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analyzed is not negligible (100 frames per second). Then, a further delay is

added and represents the time between an image capture and the successive

implementation of the trap position switch. Inputting these two effects as an

equivalent frame rate of 40 fps in the simulations fits with the experiments.

Second, since calibration of the optical landscape is a lengthy process of

refining the intensity of the 62 traps, the experiments were of necessity

performed on different beads, and there is a small variation in bead size

between the experiment and the calibration, which is estimated by measuring

its velocity. The correction is then included in the simulations as a modified

Stokes drag. Both corrections have been included in the simulations, giving

excellent agreement with data of Fig. 4.2.

4.3.2 Thermal fluctuations around the fixed point

In the presence of thermal noise, each geometric switch time ti needs to be

treated as a random variable, corresponding to the first-passage time between

the previous clock switch and the geometric switch. This is a complex situation

where uncertainties in subsequent switching times propagate between different

sub-portions of a cycle. However a simple argument is sufficient to capture

the salient features of the fluctuations. Supposing that, for an half-cycle of

index i,

t1(i) = tfp1 + q(i) , (4.7)

i.e. it is a sum of a deterministic value and some fluctuations, one obtains the

effective equation

δq = q(i+ 1)− q(i) (4.8)

= −2q(i)
ε

1 + ε
+ χ(i) , (4.9)

where χ(i) is a random variable accounting for the effects of noise. χ can be

estimated by summing two kinds of contributions. The first comes from the

diffusion from the geometric switch point to the clock switch point, giving a

variance

V1 ≈ 2D
Tc/2− 〈t1〉
v2(1 + ε)2

, (4.10)

78



4.3. State of the system

with D = kBT/γ the diffusion coefficient. The second contribution comes from

the trajectory between clock switch and the subsequent geometric switch. It

can be estimated as the difference between the first-passage time of a particle

under drift v(1+ ε) (with initial condition corresponding to the mean position

at the clock switch at distance x from the geometric switch) and the mean

of the same first-passage time. This first-passage time is known to follow an

inverse Gaussian distribution [181] which can be approximated by a Gaussian

with variance

V2 =
2Dx

v3(1 + ε)3
≈ 2D 〈t1〉
v2(1 + ε)2

. (4.11)

In the particular case where the diffusion time x2/2D is much larger than

the deterministic time x/v, the skewness of this distribution is small, and it

can be well approximated with a Gaussian. In this case, the evolution of δq

can be approximated as a simple continuous Langevin equation. Since over a

half-cycle, the variance of χ is

var(χ) = V1 + V2 , (4.12)

the fluctuations for the switching time are estimated by

〈
q2
〉

=
DTc

4εv2(1 + ε)
. (4.13)

A better estimate of the continuum limit for δq (presented in Appendix A)

leads to the refined solution

〈
q2
〉

=
DTc
4εv2

, (4.14)

or, equivalently,

std(φ1) = std

(
t1
Tc

)
=

√
ξ

16ε
, (4.15)

where std denotes the standard deviation and ξ = 2D/(Av) is a

non-dimensional measure of noise strength. This expression for the

fluctuations around the synchronized state describes very well both

experiments and simulations (Fig. 4.3).
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Figure 4.3: Increasing noise ξ leads to higher fluctuations of the delay
(phase) between a geometric switch and a clock switch. (a,b,c) Theoretical
predictions at 296 K (line) fit with both experiments (blue ◦, M and ∗) and
simulations with (green ×) or without (red +) experimental corrections.
Parameters are the same as in Fig. 4.1. (d) As shown in the formula for the
fluctuations φ1, Eq. (4.15), represented by the solid red line, the amplitude
A and the mean velocity v can be merged in the strength parameter ξ =
2D/(Av) which is the ratio of the noise amplitude gained in one half-cycle
and A. Error bars are the standard deviation of four different data sets.
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4.3.3 Effect of a detuned clock

Here, the consequences of a clock period that does not match the natural

oscillation time of the oscillator is analyzed. The period of the clock can be

longer or shorter by a time δ:

Tc =
2A

v
+ δ . (4.16)

Repeating the calculation sketched above, it can be seen that the fixed point

position rfp is shifted by the quantity (1 − ε2)vδ/(4ε). In terms of switching

times, this behaviour is translated in the synchronized “phase difference”

φ1 =
tfp1
Tc

=
1

4

(
1− 1− τ

ε

)
, (4.17)

where τ = Td/Tc measures the mismatch between oscillator and drive. This

formula assumes that the sequence of geometric and clock switches is as shown

in Fig. 4.1. It is therefore only valid for τ ∈ [1 − ε, 1 + ε]. In other words,

when changing the clock period, the system adapts its phase in the interval

[0, 1/2] in order to remain synchronized. Note that t2 will shift in the opposite

direction in order to maintain the sum t1 + t2 = Tc/2 constant. When noise

and detuning are present at the same time, the argument presented above

can be repeated step by step with no further complications, leading to the

expression

std(φ1) =

√
ξτ

16ε
. (4.18)

4.3.4 Phase diagram

Fig. 4.4(a) presents experimental data showing phase slips emerging with

detuning, and Fig. 4.4(b) explores numerically the dependence on τ of the

phase difference accumulated in each cycle. The plateaus in Fig. 4.4(b)

correspond to synchronized states [87], where the accumulated phase difference

locks. The plateau at zero, around τ ≈ 1, is the basic synchronized state and

other synchronized states exist at particular integer ratios (identical to the

Arnol’d tongues of nonlinear oscillators [87]). The synchronization plateaus
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Figure 4.4: Synchronization in presence of mismatch in the natural
frequencies of oscillator and clock. (a) shows how the experimental
accumulated phase in time ψ depends on the detuning between the clock
and the natural bead period (solid lines). 1/τ = 1.43 (blue), 1.68 (green)
and 1.75 (red). For high detuning, phase slips occur, leading to phase
difference accumulation. Dashed lines are linear fits, the gradient of which
are the phase difference accumulated in each cycle. Extensive simulations
in (b) show plateaus in the phase accumulation, at integer frequency ratios
between oscillator and clock (integer ratios are highlighted by dashed lines).
T = 296 K, A = 4.66 µm, v = 3.91 µm/s and ε = 0.5.

are affected by both noise level and detuning strength [Fig. 4.5(a,b)]. The

positions defining the plateaus can be collected as a phase diagram as a

function of τ and the noise strength ξ, for a given modulation strength ε

[Fig. 4.5(c)].

The values that delimit the synchronization region for the locked state with

equal frequency can be estimated analytically using the expressions derived

above for the fixed point of φ1 and its variability. As a criterion for stability,

to be considered as synchronized, the system should have a fixed point φ1

placed at least two standard deviations (of φ1) away from the boundaries of

0 and 1/2 set by the positions of the geometric switch. In this condition,

the probability of phase-slips is small, as there will be a slip every 43 cycles

on average. This gives the thresholds observed in Fig. 4.5(c), in very good

agreement with experiment and simulations.
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Figure 4.5: The synchronization plateau width is affected by both noise
level (a) (simulations with ξ = 2.09 × 10−7, 6.20 × 10−3, 2.09 × 10−2, 0.209
from green to red, and ε = 0.5) and coupling strength ε (b) [simulations
as lines, and experiments (◦) at 296 K for perturbations ε = 0.2 (magenta)
and 0.5 (green)]. A = 4.66 µm and v = 3.91 µm/s. Note in (a) that for
T = 296 K (i.e. ξ = 6.20×10−3), the synchronization is lost for 1/τ ≈ 1.7, in
agreement with Fig. 4.4(a). (c) Phase diagram representing the lower (red)
and upper (blue) plateau boundaries depending on the noise ξ = 2D/(Av).
Three plateaus are found in the 1/τ ∈ [0.1, 5] range. Simulations (+),
experiments (◦) and theory (lines). The regions identify synchronized (S)
and non-synchronized states (NS).
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4. SYNCHRONIZATION OF A SINGLE ROWER

4.4 Application to cilia and flagella

The two-state geometric-switch oscillator analyzed here exhibits many features

typical of a noisy nonlinear oscillator [87], similarly to rotor models for cilia [88,

142]. This is by itself remarkable, as the definition of its dynamics (with a

discontinuous velocity) puts it a priori in a peculiar class of systems. As shown

above, its synchronization dynamics and the role of thermal noise as measured

in experiments can be understood by simple quantitative arguments.

Considerations can be made on the noise threshold where synchronization is

lost. At a given detuning level τ , this is set by the external perturbation ε and

the variable ξ = 2D/(Av) ∼ kBT/Wstroke, where Wstroke = γvA is the work

performed by the rower on the fluid during one stroke. For synchronization

to be observed, the ratio ξ/ε should not exceed a critical value of order 1.

The ratio can be seen as an inverse Péclet number, for which the force in the

advective term has to be the coupling force (hence proportional to ε). This

sets a minimum scale for the size of the oscillator and its rowing amplitude.

Plugging in realistic numbers [93], it was estimated that the condition is always

satisfied for flagella and cilia (ξ ≈ 10−4 to 10−5, ε ≈ 10−1). On the other

hand, this might not always be the case for smaller systems. As an example,

ξ could be of the order of 10−2 for stereocilia [182], which might put them near

the critical limit. Indeed, it is observed that different bundles of stereocilia

do not synchronize. While realistic situations are likely to involve more

complex external drive and collective behaviour, the simple system studied

here highlights conditions and limits that are likely to apply to a range of

systems including future artificial swimmers or synchronized micromotors.

84



Chapter 5

Effect of the driving force

profile on the state of

synchronization of two rowers

5.1 Introduction

Motile cilia generate transport of fluid by periodic beating, through

remarkably organized behaviour in space and time. It is not known how these

spatiotemporal patterns emerge and what sets their properties. Individual

cilia are non-equilibrium systems with many degrees of freedom. However, in

a coarse-grained model (see Section 2.3), their description can be represented

by simpler effective force laws that drive oscillations, and paralleled with

nonlinear phase oscillators studied in physics. Here, a two-rowers experiment

proves the role of the average force profile in establishing the type and strength

of synchronization. It is found that highly curved driving potentials are

required for synchronization in the presence of noise. The applicability of

this approach to biological data is also illustrated by successfully mapping the

behaviour of cilia in the alga Chlamydomonas onto the coarse-grained model.

The system studied here is sketched in Fig. 5.1. Two rowers are placed on the

x axis, and oscillate along that direction. Previous work on two oscillators
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5. SYNCHRONIZATION OF TWO ROWERS

Figure 5.1: Two rowers driven by forces F1 and F2 and spaced by a
distance d are coupled through the fluid. This chapter focuses on the state
of synchronization and its strength depending on the shape of the driving
potentials.

showed that the hydrodynamic coupling between the oscillators leads to

synchronization in antiphase when the particles are driven by harmonic

potentials [147]. Wollin and Stark [146] also recently showed numerically

that in a system of active oscillators, driven with the geometric switch rule,

the potential shape determines the in-phase or antiphase character of motion

between nearest neighbours. Other work in my group [155] also suggest that

the state of synchronization depends on the shape of the driving forces.

With experiments, it is shown in this chapter how the driving potential, which

in a coarse grained fashion represents the internal force engine with which

the active unit of a flagellum pushes the fluid during each beating cycle,

determines the dynamical steady state in competition with thermal noise.

The experimental findings are related to fully stochastic Brownian dynamics

simulations, and the system is also studied analytically (simplifying the role

of thermal noise by neglecting the coupling of thermal fluctuations).
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5.2. Coupled equations of motion

5.2 Coupled equations of motion

The motion of two externally driven spherical particles at low Reynolds

number is described by the force balance

0 = Fi −
∑
j

H−1
i,j ṙj + fi(t) , (5.1)

where i ∈ {1, 2} indexes the bead. Fi represents the driving force acting on

bead i and ṙi its velocity. The drag is modelled by the Oseen tensor H (see

Section 1.6) and fi is a stochastic term describing the Brownian force on bead

i. For the time scales considered here, the noise is adequately described by

〈fi(t)〉 = 0 and 〈fi(t)fj(t′)〉 = 2kBT H−1
i,j δ(t− t′) (see Section 1.9). Only the

case of driving forces Fi parallel to the direction of alignment of the particles

x is considered here, which leads to coupling forces along x too. Projected

along this direction, the system of equations becomes{
0 = F1(x1, t)− γ (ẋ1 − εẋ2) + f1(t)

0 = F2(x2, t)− γ (ẋ2 − εẋ1) + f2(t)
, (5.2)

where ε = 3a/(2d) is the coefficient describing coupling between the particles,

a is the bead radius, d the mean distance between the two beads and γ = 6πηa

is the drag coefficient given a viscosity η. The non-diagonal terms of the Oseen

tensor originate from the flow field created by one bead and acting as a drag

on the other bead. In the equation above, it is supposed that the amplitude

of the oscillations A is much smaller than d, so that the distance between the

particles is constant to d.

5.3 Implementation of the rowers

The switch rule maintains the colloids out of equilibrium [Fig. 5.2(a)]. The

basic oscillation cycle of each bead is built by alternatively activating two

traps, the rule being described in Fig. 2.11. The two rowers are characterized

by the same potential, but centred on different positions (Fig. 5.1). The
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Figure 5.2: (a) Selected frames showing a single bead driven by optical
traps through the geometric switch rule. The direction of the gradient of
laser intensity is shown in red arrows. It is reversed when the particle
reaches a position defined by the dashed line. (b) Tracks of a single
driven particle. The three different graphs correspond to different driving
potentials with positive (red), null (green) and negative (blue) curvature.
The shape of the potential affects the curvature of the tracks.

simulations consider potentials of the form kαx
α, where the parameter α

characterizes the curvature. The force Fi(xi, t) can therefore be written

Fi[xi, σi(t)] = −σiαkα
∣∣∣∣x+ σi

λ

2

∣∣∣∣α−1

. (5.3)

Here, σi = ±1 is the state of the switch acting on bead i and defines in which

direction Fi is dragging the bead, and xi is measured from the mean position

(point Oi in Fig. 5.1). λ is the distance between the centres of the two traps

driving one of the beads. The geometric switch imposes a constant amplitude

of oscillations A = λ− 2ς, with ς an input paramater in the simulations.

The experimental setup produces potential landscapes of varying curvatures

by using time-shared optical traps, with a designed gradient of laser intensity

as explained in Section 3.2.4. Each landscape is made of 62 traps, so that
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Figure 5.3: (a) Mean driving potentials for a bead driven in potentials
of positive (red), null (green) and negative (blue) curvature, measured
from the tracks in Fig. 5.2 (2 min long movies). (b) A potential (cyan) is
modelled in the theory as “two-slopes” (purple). The curvature parameter
c is measured from the mean potential in (a) by fitting the slopes at −A/2
and A/2, giving Fb and Fe for both decreasing and increasing potentials.
Experimental parameters in (a): A = 3.1 µm, d = 10 µm, T = 296 K,
F0 ∼ 0.53 pN and c = 0.38 (red), −0.11 (green) and −0.40 (blue).

at a given instant, 124 simple traps are active for the whole system of two

rowers. Experimental potentials can be approximated by the power laws in

simulations. More simply, their shape is captured by a parameter

c =
Fb − Fe
Fb + Fe

(5.4)

which depends only on the forces Fb and Fe at the beginning and the end switch

positions respectively, see Fig. 5.3(b). As it will be show in this chapter, all

the effects due to potential shape can be related to this curvature parameter

c and to the mean force F0 = (Fb + Fe)/2, as also suggested in [146].

Experimental potentials are created with different curvatures, as shown in

Figures 5.2(b) and 5.3(a). The potentials are measured from the position x(t)

of a single bead oscillating, by constructing a histogram of the position of the

bead in time, relative to the switches of the traps. This procedure averages

out the thermal noise, showing clearly the difference of curvature in the three

experiments in Fig. 5.3(a). Experiments are conducted with 3.47 µm diameter

silica beads from Bangs Laboratories, diluted in a water-glycerol solution with

a viscosity of 2.2 mPa·s. Trapped beads are maintained at least 70 µm far
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5. SYNCHRONIZATION OF TWO ROWERS

from any surface of the microscope slides in order to avoid effects of wall

interaction.

5.4 In-phase to antiphase transition

Two rowers are now put close to each other and interact through the fluid.

Figures 5.4 and 5.5(a,b) show a clear antiphase behaviour observed in the

steady state for potentials with positive curvature, and in-phase behaviour

with negative curvature. The system with linear drive is not synchronized.

In Fig. 5.5, a synchronization order parameter Q(k) is calculated for each

half-cycle k of oscillation of the bead 1 [147],

Q(k) =
−1

sk+1 − sk

∫ sk+1

sk

dt σ1(t)σ2(t) , (5.5)

with sk the time at the kth switch of bead 1 and σi(t) = ±1 the variable

defining the state of the potential for bead i (indicates if the driving force is

pushing the bead towards increasing or decreasing positions). Q is normalized

so that −1 < Q < 1, with Q = −1 describing in-phase motion and Q = 1

antiphase. As defined in Eq. (5.5), it is calculated for each half-cycle.

Fig. 5.5(a) shows its average over an experiment 〈Q〉k, while Fig. 5.5(b) shows

its distribution.

These optically driven oscillators are the first experimental realization of a
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Figure 5.4: Experimental tracks of two beads coupled hydrodynamically,
for the three driving potentials characterized in Fig. 5.3(a). Positive
curvature leads to antiphase (AP) synchronization while negative curvature
leads to in-phase (P) synchronization. In the limit case of linear potentials
(zero curvature; central section of the plot), the beads do not synchronize.
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Figure 5.5: (a) The phase/antiphase transition in the oscillation
dynamics of the two particles is observed in experiments (◦), simulations
(+) and adequately captured by theory (lines). Conditions are A = 3.1 µm
and F0 ∼ 0.53 pN, and noise strength ξ = 2kBT/(AF0) is varied by changing
the temperature [from blue to orange: ξ ≈ 1.68 × 10−7, 8.38 × 10−4,
4.96 × 10−3 (room temperature), 1.68 × 10−2 and 8.38 × 10−2]. 〈Q〉
characterizes the state of oscillations (1 in AP and −1 in P). Experiments
should be compared with the simulations in green. At any temperature,
the state of synchronization is either in phase or in antiphase, depending
on the sign the curvature c, with a sharper transition at lower temperature.
The transition is smoother when noise is added. Theory fits very well
with experiments and simulations up to room temperature. Inset: Phase
diagram showing synchronized states in phase (P), in antiphase (AP) or
not synchronized (NS). Theory (lines), simulations (+) and experiments
(◦) show, for each value of the noise strength ξ, the value of c for which
| 〈Q〉 | = 1/2. The dotted line shows the noise strength estimated for
Chlamydomonas. The probability distributions of Q at T = 296 K in
experiments (b), simulations (c) and from the theoretical argument (d)
show that in presence of noise, the peaks are still centred around ±1 but
with a large spreading. The theoretical curves are chopped when crossing
0 as the analytical formula fails to describe the state when synchronization
is very weak or lost (see Appendix B). In the experiments, the two-rowers
movies are 5 min long, while simulations are equivalent to 2000 s. In the
simulations, ς = 1 µm.
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5. SYNCHRONIZATION OF TWO ROWERS

hydrodynamically synchronized system transitioning between in-phase (P)

and antiphase (AP). The transition is obtained by varying the curvature of

the potentials. Numerical simulations of power law potentials are carried out,

with different exponents α while choosing stiffnesses kα such that the period

of a cycle stays constant [Fig. 5.5(a,c)]. These show in general synchronized

dynamics, with a transition at the linear drive condition, i.e. at α = 1 (which

corresponds to c = 0).

In the limit of no-noise (which is not accessible experimentally), the known

result that the pure P and AP are the only possible stable states is recovered,

and the system converges to either one depending on the sign of c. Only

for α = ±2 this result can be obtained analytically, as previously shown for

α = 2 [147]. However, the main question lies in the role of noise in the

crossover between positive and negative curvature, and therefore requires a

more general approach.

5.5 Theory for the synchronization of two

rowers

5.5.1 Without thermal noise

The general deterministic (no noise) behaviour can be estimated analytically

using an approximating two-slopes potential [Fig. 5.3(b)] which is adequate to

approximate both the simulated results, which use power law potentials, and

experimental results, for which the shape is not a specific analytical function.

The calculation is only outlined here. For the full calculation, see Appendix B.

The two-slopes model might seem like a crude simplification, but it produces

remarkably robust estimates, and it is necessary to obtain simple expressions

for the particles’ first-passage times in the presence of noise (see Fig. B.2).

Note that the two-slopes model introduces an additional parameter defining

the position of the slope break [visible in Fig. 5.3(b)], but the synchronization

state does not depend on this parameter. This is justified in the appendix.
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5.5. Theory for the synchronization of two rowers

The case for c < 0, for which in-phase synchronization is expected, is explicitly

illustrated here. As a proxy for the phase, the time difference t1 between the

nearest switch of the second bead that occurs closest in time to a switch of

the first bead is considered (it is defined for every half-cycle k of one of the

beads). The aim is to provide an expression of t
(k+1)
1 depending on t

(k)
1 . Note

that t1 = 0 can correspond to either a P or AP oscillation depending on the

sign of σ1(t)σ2(t) at the simultaneous switch time, but an initial condition

close to the in-phase state is assumed here for sake of argument. Since in this

approximation the driving potentials are only defined with constant forces,

and the hydrodynamic coupling term in Eq. (5.2) is linear, the half-cycle k

can be split into four parts within which the velocities of the beads will be

constant at ± 1
γ
(Fu ± εFv) with u, v ∈ {‘b’, ‘e’}. Therefore, t

(k)
1 , t

(k+1)
1 , the

start times of each part and the positions at these times are all related by a

linear system of equations that is solved in Appendix B and leads to a simple

iterative map for t1:

t
(k+1)
1 = κP t

(k)
1 , (5.6)

with

κP = 1 + 2ε
F 2
b − F 2

e

FeFb
, (5.7)

to first order in the coupling coefficient ε. For c < 0, Fe > Fb and κP < 1,

leading to the known result that in-phase synchronization is stable. Identical

equations hold for the antiphase state with a κAP having reversed sign for

ε, and hence give stability for c > 0. This simple model shows that the

state of synchronization depends on the sign of c. Note that for c = 0,

κP = κAP = 1 and the system does not synchronize. This particular case is

expected, since the driving force over a cycle should be non-reversible in time

to allow synchronization, at least in the absence of thermal fluctuations [18].

5.5.2 With thermal noise

Most importantly, having approximated the driving potentials, it is possible

to estimate analytically the role of noise in synchronization. Thermal noise

adds fluctuations to t1 at each half-cycle, represented as a random variable
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5. SYNCHRONIZATION OF TWO ROWERS

ζ(i) added to Eq. (5.6):

t
(k+1)
1 = κt

(k)
1 + ζ(k) . (5.8)

Here κ simply represents either κP or κAP depending on the sign of c,

allowing to solve both P and AP cases at the same time. For one bead, the

time difference between two consecutive switches is a first-passage time. Its

distribution is estimated by considering each of the two linear portions of the

potential separately, and neglecting the change of velocity of the beads due to

the coupling term, as well as the correlations in the noise. By combining the

supposed independent fluctuations for each bead (generalizing the procedure

carried out in Chapter 4), ζ(i) is approximated as a zero-mean Gaussian

random variable of variance

var [ζ(k)] =
4ADγ3

F 3
0

1 + c2

(1− c2)2
, (5.9)

with D = kBT/γ the diffusion coefficient of a particle. By iterating Eq. (5.8),

the autocorrelation function of t1 is deduced:

gt1(k) = κkg(0) , (5.10)

with gt1(0) = var(ζ)/(1−κ2) the variance of t1. gt1 is compared to simulations

in Fig. 5.6. As t1 is linked to the phase between the two beads, 〈Q〉k can

be written in terms of gt1(0) and the analytical function 〈Q〉k is displayed

in Fig. 5.5(a). Further details concerning this calculation are provided in

Appendix B.

From the degree of order in the dynamics (for which a threshold of |〈Q〉k| > 1/2

is taken to consider the system as synchronized), it is possible to draw

a phase diagram for the synchronized states, as a function of the two

important parameters: curvature and noise amplitude. As shown in the inset

of Fig. 5.5(a), the analytical estimate agrees very well with the Brownian

dynamics simulations, up to considerable levels of noise. Fig. 5.6 shows that

the simulated autocorrelation functions decays in a few cycles for highly curved

potentials (large |c|), and slower near the transition, where κ tends towards 1.
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Figure 5.6: Autocorrelation of the phase t1 between the two beads
in simulations (+) for different values of c: −0.42 (blue), −0.20 (green),
−0.0071 (red), 0.20 (cyan) and 0.42 (purple) fitted to exponential decays
(solid lines). Inset: simulated decay coefficients κ for ξ = 4.96× 10−3 (blue
markers) and ξ = 8.38 × 10−4 (red markers) are in good agreement with
the theoretical values (black line). The strength of synchronization is the
strongest for the highest curvatures (high |c|). Theory and simulations
differ for c ≈ 0 because the assumption that oscillations are nearly in
phase or in antiphase becomes wrong; when the noise strength increases
this happens for larger values of c. Parameters are the same as in Fig. 5.5.
Experiments are not shown as the statistical noise is too large in the 5 min
long experimental data sets.
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5.6 Application to the Chlamydomonas alga

The predictive power of the bilinear model demonstrates that the relevant

feature of the internal engine affecting the synchronized state is the

difference between the forces at the instances of switch. This is relevant

to synchronization in biological cilia and flagella. This section illustrates

it by taking as an example the biflagellated alga C. reinhardtii where the

synchronization state of the two beating filaments can be tuned, leading to

different swimming modes: directed runs, and random tumbling [93].

In order to map the synchronization of the two flagella of Chlamydomonas

with the coarse-grained model made of two beads, one need (a) to reconstruct

the driving potentials of each flagellum and (b) to project the oscillations

along one particular direction. This is done by using data of flagellum

configurations during beating in a uniflagellated Chlamydomonas [64] by

modelling a flagellum at instant t by a bead located at the centre of mass of

the filament that is subject to a driving force that is the opposite of the total

force from the fluid acting on the flagellum. The model is one-dimensional

(i.e. the coupling forces from the Oseen tensor are in the same direction as

the driving forces) in two particular cases: when the driving forces are along

x or along y, with x the direction of the line defined by the average position of

the two beads (Fig. 5.7). The case of oscillations along x is explicitly detailed

here. The other case is described by the same model in which x is replaced

by y and the coupling term ε is replaced by 3a/(4d).

Projecting forces from Chlamydomonas parallel and perpendicular to the

direction of motion, effective one-dimensional switching potentials can be

obtained. More details on the matching of the parameters from the data

on Chlamydomonas to the model are discussed in Appendix C. From this

matching procedure several conclusions were found. First, the mapping

recovers the correct synchronized state both when projected along x and

y: flagella oscillate in phase along x and in antiphase along y. Second, as

illustrated by the dotted line in Fig. 5.5(a), the biological system appears quite

far from the noise threshold. Third, the model predicts that the component of

the hydrodynamic interaction which dominates the synchronization is y, i.e.
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Figure 5.7: The biflagellated Chlamydomonas organism can be modelled
as a unidimensional system of two rowers along the x or y axes. Because
of the “breaststroke” of the flagella, when projected along x [red rowers
represented in (a)], the system is expected to be in antiphase, while it is
expected to be in phase for rowers projected along y [as in (b)].

transverse to the swimming direction of the microorganisms. This last point

would be relevant in conditions where the presence of multiple organisms

contributes to additional periodic forces.

5.7 Conclusions on the role of curvature of the

driving forces

The two possible states for the synchronization of two rowers — phase and

antiphase — have been observed experimentally. The transition between the

two states was observed by Wollin and Stark [146] without thermal noise,

for which the system has no threshold. This work shows the importance of

balancing the curvature of the driving potential to the level of noise: a stronger

curvature makes the steady state more robust, pointing to a requirement of

time asymmetry in the driving potential for strong synchronization. It might

as well be related to another model of oscillator studied recently by Leoni and

Liverpool, in which the driving force Fi is made dependent on the particle

position by setting its time derivative as being a third order polynomial of the

particle position x [150]. In-phase and antiphase synchronization is obtained

in this system and depends on the sign of the coefficient for x3, that would be

equivalent to the sign of the curvature of the driving potentials for the rowers.

97



5. SYNCHRONIZATION OF TWO ROWERS

The phase diagram of the dynamical state versus curvature and noise enables

biological systems to be mapped onto the model. This is useful in two

ways: For systems (like Chlamydomonas) for which the cilia’s force cycle

has been measured, it is possible to predict the state of synchronization

from the coarse-graining of internal degrees of freedom. On the contrary,

from the observation of cilia correlations at steady state, it is possible to set

boundaries on the cilia geometric parameters (distance, filament length) and

on the average properties of the active force cycle, which results from the

activity of molecular motors and the filament structure.
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Chapter 6

Understanding the dynamics in

systems of many rowers

6.1 Introduction

The phenomenon of metachronal waves in cilia carpets has been well known

for decades; these waves are widespread in biology, and have fundamental

physiological importance. While it is accepted that in many cases cilia

are mainly coupled together by the hydrodynamic velocity field, a clear

understanding of what aspects determine the collective wave properties is

lacking. It is a difficult problem, because both the behaviour of the individual

cilia, and their coupling together, are nonlinear. In this chapter, rowers

are used to investigate experimentally the coupling through hydrodynamics

in systems of many oscillators, showing that collective dynamics emerges.

This work generalizes to a wider class of systems the recent finding that the

non-equilibrium steady state can be understood based on the equilibrium

properties of the system, i.e. the positions and orientations of the active

oscillators. In this model system it is possible to design configurations of

oscillators with the desired collective dynamics. The other face of this problem

is to relate the collective patterns found in biology to the architecture and

behaviour of the individual active elements.
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Most of this work was done with Romain Lhermerout, a master student under

my supervision in 2011.

The main result of this chapter is to prove that even in apparently complex

arrangements of oscillators (disordered and lacking rotational or translational

symmetries), it is possible to predict the collective dynamics from just the

knowledge of the positions and orientations of the oscillators. In a biological

tissue with a carpet of cilia, plenty of oscillators at various positions will be

oscillating, quite possibly exerting forces in different principal directions, and

their phases will be free to couple. The result obtained here with harmonic

potential driving is therefore a key step, albeit in a simple model system,

in establishing the important link between microscopic and macroscopic

behaviour in systems of hydrodynamically coupled oscillators.

6.2 Background

The problem of understanding the collective dynamical pattern of systems

with large number of particles was already approached in different contexts:

particles confined in static traps, and rowers. The state of understanding of

these two coupled systems prior to the start of my Ph.D. is summarized in

this section.

6.2.1 Decoupling of the equations of motion for inter-

acting particles in static potentials

Systems of several particles, each of them trapped in a harmonic static

potential, were studied by different groups, namely Meiners and Quake [29]

for two particles, Polin, Grier and Quake [183] in a linear chain of particles,

and Di Leonardo et al. [184] and our group [30] for particles equally spaced

along a circle. The fluctuations in position of the particles that originate from

Brownian motion show a complex dynamics because of the hydrodynamic

coupling. However, since the Oseen tensor leads to linear equations of motion

when the distances between the particles are constant (which is a fairly good
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approximation for particles that are confined and far apart), the dynamics

simplifies, when the set of (xi)i∈{1,...,2N} coordinates (in 2d) of the particles

is observed in a space of new coordinates in which the Oseen tensor is a

diagonalized. In this space, each of the positions along each coordinate x̃i

shows fluctuations that are characterized by a time autocorrelation that decays

exponentially [29, 30, 183]:

〈x̃i(0)x̃i(t)〉 ∝ e−t/τi , (6.1)

with a characteristic decay time τi related to the eigenvalues of the

diagonalized Oseen tensor. This result is obtained by using (a) that individual

uncoupled beads have exponentially decaying autocorrelations in position, (b)

the linearity of the coupled equations of motions, and (c) that the Oseen tensor

can always be diagonalized. In the new coordinates, the different modes are

also uncoupled:

〈x̃i(0)x̃j(t)〉 = 0 for i 6= j . (6.2)

Hence, in the diagonalized space, the system is fully understood in terms of

the dynamics of “normal modes”.

6.2.2 Dynamic solutions of interacting rowers

In an attempt to use the results above on configurations of active oscillators,

rowers experiments were performed in my group before I started my

Ph.D. [155]. For simple configurations of rowers arranged along a circle,

equally spaced, and oscillating tangentially to the circle, the decomposition

on normal modes was used to determine analytical solutions of the dynamics

of the system. The calculation was tractable, because of the high level of

symmetry of these configurations.

The basic idea developed in [154] and [155] is that the dynamic solution of the

system is simply described by a combination of normal modes in all the time

intervals during which none of the oscillators undergoes a geometric switch.

After solving the problem in a first time interval, the equations can be solved in

the next interval (after the first trap switch), taking into account the continuity
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of the particles’ positions. The evolution in time of an initial condition can

therefore be written explicitly, solving step by step the equations. Periodic

solutions can be found by setting as a constraint that the system should come

back to its initial condition. The calculation can only be carried out in simple

highly symmetric configurations, like a small number of rowers on a circle.

The point made in [154], was that while there is no simple recipe to predict

the stable synchronized state (out of a great variety of solutions that can

be found), its main properties are determined by the normal mode with the

longest relaxation time (for harmonic drive).

This chapter describes the continuation of this work in which more complex

configurations (defined by the positions and directions of the rowers) are

studied. It presents a method to extract information on the dynamics of

any configuration of rowers coupled through the Oseen tensor, by using an

“effective Oseen tensor” that reduces the dimensionality of the system. For

example, the dynamics of a system of nine rowers realized experimentally

(Fig. 6.1) could be understood in terms of normal modes of oscillation. Unlike

in [154], solutions are not explicitly calculated, but rather characterized by the

mode with longest relaxation time.

Figure 6.1: Optical microscopy image obtained in the optical tweezers
setup showing nine rowers. The average distance between nearest
neighbours is d = 8 µm. Arrows indicate the orientation of the driven
oscillations, for each bead. This configuration of nine beads is the largest
of the ones investigated experimentally in this work, and is presented in
Section 6.5.4.
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6.3 Coupled rowers driven by harmonic po-

tentials

This work is limited to rowers driven by harmonic traps [U(x) = kx2/2 for a

single oscillator], as shown in Fig. 2.11. The results obtained in this chapter

do not apply to the potentials with other curvatures discussed in Chapter 5

(in particular potentials with a curvature c < 0).

6.3.1 Driven dynamics of a single oscillator

For a single oscillator, the equation of motion is a balance of the

configuration-dependent driving force F(x, config), the drag and the thermal

forces:

F(x, config) = γẋ + f(t) , (6.3)

where γ = 6πηa, η is the viscosity of the solvent, and f(t) is white noise

with mean square amplitude set by the fluctuation dissipation theorem.

If the potentials are harmonic, and the motion is along the x-axis, then

Fx(x, config) = ±k(x ± λ/2), with the signs depending on the configuration

history, see Fig. 2.11. Up to a geometric switch boundary, Eq. (6.3) describes

on average an exponentially decaying trajectory with relaxation time γ/k.

6.3.2 Dynamics of many oscillators

Here we consider N oscillators at positions rn = xnêx + ynêy. The Oseen

tensor describes the relation between the set of all velocities {vi} and forces

{Fj} (see Section 1.6):

vn =
N∑
m=1

H(rn,m)Fm , (6.4)
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with

Hn,m(rn,m) =


1

8πηrn,m
(I + ên,m ⊗ ên,m) if n 6= m

I

6πηa
if n = m

, (6.5)

where ên,m = xn,m/rn,m.

The steady state dynamics of the geometric switch model can be obtained in

principle by solving the dynamic system of equations

Fi(ri, config)−
N∑
j=1

H−1
i,j

drj(t)

dt
+ fi(t) = 0 , for i ∈ {1, . . . , N} , (6.6)

where the second term describing the Oseen coupling forces scales with

distance ri,j as 1/ri,j, and the force Fi acting on the ith particle is harmonic.

The equation is valid in between any two switches, with Fj(rj, config) driving

the jth particle towards some fixed minimum; Fj(rj, config) then changes form

once a jth particle reaches a geometric switch position.

The stochastic force fi(t) in Eq. (6.6) represents the thermal noise on the ith

particle. It is characterized by the expressions given in Section 1.9, and is

present experimentally (see Chapters 4 and 5, and [147, 155]). It complicates

considerably the behaviour of the nonlinear system. It can be included in

the Brownian dynamics simulations, but it is neglected to make analytical

progress in this chapter.

The fact that Eq. (6.6) changes structure at every switch, makes its solution

complex even in the absence of thermal noise. In the presence of noise it then

becomes an intractable many-particle first-passage time problem. In a recent

paper [154] it was shown how to build analytical solutions in the absence of

noise, for some special configurations with high symmetry, starting from a

knowledge of the hydrodynamic modes. Here below, the class of systems on

which hydrodynamic modes of the actively driven system can be calculated

and related to the steady state solution is generalized.
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θ

d

1 θ2ê2ê1

Figure 6.2: Diagram illustrating the configuration of two beads with
directions of oscillation θ1 and θ2.

(a) (b)

87 % 13 %

v1
~ v2

~

Figure 6.3: In the simplest case of two beads oscillating on axis [i.e.
(θ1, θ2) = (0, 0)], the two normal modes of oscillations ṽ1 and ṽ2 are
simply antiphase motion (a) and in-phase motion (b). The geometry of
the modes is illustrated by the vector pairs ṽ1 and ṽ2; the eigenvectors are
labelled from 1, . . . , N (in this case N = 2) in order of decreasing relaxation
time scale, and this convention is followed throughout this chapter. The
percentage indicates the fractional amplitude observed experimentally from
the decomposition of the steady state solution onto the normal modes, as
defined in Eq. (6.16).

6.3.3 An effective Oseen tensor accounts for the con-

straints

The oscillators are driven at fixed angles θn, i.e. directions ên = (cos θn, sin θn)

(see Fig. 6.2 for a simple two-rowers configuration). In other words the driving

forces, and to a good approximation also the displacements in Eq. (6.6), are

oriented at a fixed angle θi; so we can impose this as a condition that the

active driving of each bead along its fixed direction is also constraining each

bead to move only along that fixed direction. As in [154, 155], since for each

bead most of its displacement takes place along the direction of its drive, this

is a fair approximation of the main component of the motion. Based on this,

we now show how the general coupling Eqs. (6.6) can be recast in a more

transparent way for the system with driven motion. This will enable to show

that the main properties of the steady state solutions can be predicted quite

simply from the equilibrium coupling tensor, and hence depend on N and on
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the spatial distribution and arrangement of angular drives.

The direction of the forces is known:

Fm = Fmêm

= Fm (êx cos θm + êy sin θm) . (6.7)

With the movement assumed confined in the θm direction, we approximate

the velocities as

vn ≈ vn · ên for n ∈ {1, . . . , N} . (6.8)

Substituting Eqs. (6.5) and (6.7) into Eq. (6.8) leads to:

vn ≈
Fn

6πηa
+
∑
m 6=n

Fm
8πηr3

n,m

[(
r2
n,m + x2

n,m

)
cos θm cos θn

+
(
r2
n,m + y2

n,m

)
sin θm sin θn

+xn,myn,m (cos θm sin θn + sin θm cos θn)
]

.

(6.9)

Eq. (6.9) is a linear relation between the scalar velocities vn and the scalar

driving forces Fm. By analogy with the general Oseen coupling tensor of

Eq. (6.4), we can define an effective Oseen tensor that satisfies

vn =
N∑
m=1

Heff
n,mFm , (6.10)

with

Heff
n,m =



1

6πηa
if n = m

1

8πηr3
n,m

[(
r2
n,m + x2

n,m

)
cos θm cos θn

+
(
r2
n,m + y2

n,m

)
sin θm sin θn

+xn,myn,m (cos θm sin θn + sin θm cos θn)
]

if n 6= m

.

(6.11)

Confining the motion to one dimension for each bead, we have reduced the

system from 2N [set of Eqs. (6.4)] to N [set of Eqs. (6.10)] coupled equations.
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6.3. Coupled rowers driven by harmonic potentials

When working with systems where the amplitude of driving is much smaller

than the distance between particles, i.e. A� rn,m, it is a good approximation

to consider the average distance 〈rn,m〉 in the Oseen tensor, rather than the

time dependent quantity. This time-independent tensor is then what we

consider in the following.

From here onwards, to maintain light notation, we will call by rn the

displacement of bead n from its time average position.

6.3.4 There is a dominant mode in the steady state

dynamics

We now show how the effective Oseen tensor allows to describe the main

properties of the synchronized state of any system of several oscillators

(extending the case of driven colloids on circles [154, 155]).

Heff can be diagonalized (since it is a real and symmetric matrix) to obtain

the different normal modes of the coupled system. This follows a similar logic

to previous work in my group [147, 154, 155]. Projecting the velocities onto

the eigenvectors gives the set of uncoupled equations:

ṽk = λkF̃k (6.12)

The relaxation time of the mode k is τk = 1/(kλk). The N -bead system has

N normal modes and in general N time constants (although certain modes

may be degenerate and have the same τ).

The collective dynamics of the driven system is dominated by the mode (or one

of the degenerate modes) with the longest relaxation time. The reason why

this holds is currently only understood qualitatively, as discussed in [154, 155],

and the purpose of this work is to show experimentally that this observation is

very general: several experimental configurations are considered in Section 6.5.
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6.4 Experimental details

The rowers were implemented on the tweezers setup described in Section 3.2.2.

The silica beads (Bangs Laboratories) have a radius a = 1.74 µm. The solvent

is a solution of 31 % glycerol and 69 % water by weight, corresponding to a

nominal viscosity of η = 3 mPa·s at 20 ◦C [173]. Experiments are performed

in a room with controlled temperature at T = 21 ◦C. The trapping plane is

positioned several particle diameters above the flat bottom of the sample, in

a sample volume that is around 150µm thick.

The geometric switch is implemented experimentally with images acquired

at 100 Hz. Colloidal particles are always being driven, never reaching the

minimum of the active trap.

The optical trap potential is harmonic to a very good approximation, used

here with a stiffness k of 0.2 pN/µm when trapping two beads (stiffness was

maintained fairly constant when changing the number of beads trapped, and is

calibrated from the distribution of displacements in static traps, typically with

a 10 % precision). The relaxation time τ0 = γ/k is of the order of 0.44 s. The

experiments have been performed with λ = 1 µm, ς = 0.31 µm (see Fig. 2.11

for the notations) and a distance between nearest neighbours d = 8 µm. The

deterministic period of an isolated oscillator is T0 = 2τ0 log[(λ − ς)/ς] [147],

which under the experimental conditions is about 0.7 s. With the image

acquisition operating at the frame rate of 100 frames per second (depending

on the system size, hence captured region of interest) there are multiple frames

captured within the relevant time scales τ0 and T0. Video is acquired for over

5 minutes, i.e. over 30000 frames. There is typically a transient lasting around

a few periods before the systems reach the steady state discussed below.
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6.5 Experimental examples of configurations

of oscillators

6.5.1 Two coupled oscillators

The most simple case we consider here is that of two oscillators with variable

angles θ1 and θ2, see Fig. 6.2. Within this class, three particular cases

can be solved with the only approximation that the distance between the

particles can be supposed constant: horizontal-parallel, vertical-parallel and

horizontal-vertical, giving coupling terms 3a/(2d), 3a/(4d) and 0 respectively.
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Figure 6.4: Two particles on axis, (θ1, θ2) = (0, 0), synchronize in
antiphase. The displacements are shown in (a), while the amplitude of
the oscillations projected onto the two normal modes in shown in (b).

In general for this N = 2 case, the effective Oseen tensor Heff is

Heff =
1

γ

(
1 C

C 1

)
, (6.13)

with C the hydrodynamic coupling term between the two beads that depends

on the directions of oscillation θ1 and θ2:

C(θ1, θ2) =
3a

4d
(2 cos θ1 cos θ2 + sin θ1 sin θ2) . (6.14)
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The diagonalization of Heff gives the eigenvalues λ1 = (1 − C)/γ and λ2 =

(1 + C)/γ, and the eigenvectors:
ṽ1 =

1√
2

(v1 − v2)

ṽ2 =
1√
2

(v1 + v2)
. (6.15)

The first mode (smaller λ, hence higher relaxation time) represents a motion

of the beads in opposite directions, i.e. antiphase oscillations, while the

second mode is oscillations in phase. To visualize a mode n, we represent

its decomposition on (vi)i∈{1,...,N} as follows: for each oscillator i, a vector is

drawn, centred on the average position ri, with a direction êi (angle θi) and a

length (positive or negative) proportional to the coefficient of the component

vi in the eigenvector describing the mode. As an example, the two modes for

the (θ1, θ2) = (0, 0) configuration are shown in Fig. 6.3. The trajectories of

two beads in this horizontal parallel configuration are shown in Fig. 6.4(a).

In configurations (θ1, θ2) for which the coupling C is non zero, the mode

with the longest relaxation time is ṽ1. Therefore, we expect the system to

synchronize in antiphase. This is evident in the trajectories of Fig. 6.4(a)

and is confirmed by the projection of these experimental trajectories onto the

eigenvectors, as shown in Fig. 6.4(b).

To estimate more quantitatively from experimental data the fraction of

oscillations in each mode, we proceed in two steps. (a) We calculate the

projections of the oscillations onto the modes; and (b) we define the relative

amplitude of a mode n from

fn =
std(r̃n)∑N
i=1 std(r̃i)

, (6.16)

where std(r̃n) denotes the standard deviation of the r̃n(t) mode. For example

in the case of (θ1, θ2) = (0, 0) of Fig. 6.4, we found a high fraction f1 = 87 %

in the “antiphase” (AP) mode. This is as expected, and consistent with [147],

where the small existing fraction f2 in the “in-phase” (P) mode was shown to

be due to the thermal fluctuations. In the particular configuration (θ1, θ2) =

(0, π/2), the fraction of the antiphase mode and in phase mode are almost
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Figure 6.5: There is a strong correlation between the coupling
strength and the dominance in the collective dynamics of the longest
relaxation mode. (a,b) show two views of the function |2 cos(θ1) cos(θ2) +
sin(θ1) sin(θ2)|, proportional to the coupling parameter |C| between the
two beads. Coupling depends on the directions of oscillations θ1 and θ2

of the two beads. This function has the same form as the experimentally
measured fraction in the longest-lived mode f1(θ1, θ2), shown in (c,d). Note
that f1 → 1/2 is a signature of loss of synchronization, since the two modes
have equal probability.

equal (52 % and 48 %). This is because in this case the coupling C between

the beads is zero: The two modes are degenerate as they have the same

relaxation time and there is no preference for the system to oscillate in either

mode.

The two particular cases above show two possible regimes: synchronization

in AP and no synchronization. We have studied intermediate configurations

by varying both θ1 and θ2. Eight values of each of the angles were fixed in

experiments, mapping out 64 points in the (θ1, θ2) space. The magnitude

of the theoretical value of coupling, given by |2 cos θ1 cos θ2 + sin θ1 sin θ2|,
from Eq. (6.14), is shown in Fig. 6.5(a,b), while the experimentally

measured fraction f1 describing the decomposition into the antiphase mode in
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Fig. 6.5(c,d). There is a remarkable similarity between these two surfaces.

In this simple N = 2 case, this fraction is equivalent to the degree of

correlation, falling to 1/2 when there is no correlation. In particular the

locus of points with zero coupling is known analytically from Eq. (6.14), and

describes two arcs in (θ1, θ2) space, in agreement with the experimental points

where f1 ≈ 0.5. Clearly, it is not just the horizontal/vertical perpendicular

pair of oscillators that is uncoupled.

Making a quantitative link between |C| and the fraction in antiphase requires

not just the construction of deterministic solutions from the normal modes,

but also a consideration of the effect of noise. One can use the calculation of

the order parameter 〈Q〉 in Chapter 5, replacing by |C| the 3a/(2d) coupling,

that was the particular case (θ1, θ2) = (0, 0).

6.5.2 Three oscillators on a circle

To test the theoretical framework of the effective Oseen tensor for the driven

system, and its predictive power for the symmetry and dominant properties of

the steady state dynamics, a number of three-bead configurations are explored.

In Fig. 6.6(a), radial oscillations are considered. The normal modes are shown,

together with the experimental fractions fn with n ∈ {1, 2, 3}. The same in

Fig. 6.6(b) for tangential oscillations. In both cases the normal mode with

the highest relaxation time appears dominant in the solution.
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Figure 6.6: Three beads oscillating (a) radially and (b) tangentially to a
circle. Panels illustrate the configuration, and the three normal modes for
each case. In both systems, the normal mode with the longest relaxation
time, ṽ1, is found to be dominant in the experimentally observed steady
state solution. The percentages indicate the fraction of amplitude from
the decomposition of the steady state solution onto modes, as found in the
experiment.
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Figure 6.7: Even in configurations that lack the rotational symmetry
considered in Fig. 6.6, the dominant mode in the steady state solution
is that with longest relaxation time. Three beads are studied, driven to
oscillate in (a) a parallel configuration, and (b) in a “bridge” configuration
on a the vertices of an equilateral triangle. As before, the normal modes are
shown, in order of decreasing relaxation time scale, with the percentages
indicating the decomposition of the steady state solution onto modes, as
found in the experiment.
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In Fig. 6.7, two configurations that lack symmetry are considered. In

Fig. 6.7(a) three beads on the vertices of an equilateral triangle are driven

in a parallel direction. If one thinks of this arrangement by extension from

the two-bead system, the bead at the top vertex could “choose” to synchronize

with either of the bottom ones, with no preference; the longest lived mode,

shown in the figure, has zero amplitude for the top bead (hence it is clear that

it cannot by itself represent the solution to the driven dynamics, which requires

that once per period each bead should have a displacement of amplitude A).

Aside from these considerations, which can help to build the solution from the

normal modes, here too the dominant mode is ṽ1. This is found also for the

system in Fig. 6.7(b), where the bottom beads are moved vertically, and the

top bead horizontally.
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6.5.3 Synchronization through a “master bead”

In [155], the concept of “dynamical motifs” was introduced, as those patterns

of dynamics that one might expect to identify locally in a cluster of strongly

correlated oscillators, coupled more weakly within a larger system. The most

basic of all the motifs is the behaviour of two beads, which we have seen above

and can be tuned to be in antiphase all the way to non-coupled, by a choice

of orientation. Developing this idea, it is particularly interesting to consider

the behaviour of two beads in a condition of no coupling (e.g. perpendicular)

when a third bead is introduced into the system (see Fig. 6.8). The third

bead is a free-phase oscillator, equivalent to the first two. Its role is only

special due to its particular position and orientation. Through this third

bead the first two become coupled, and their synchronization state is tuned

by the position and the orientation of the third bead, which acts as a control

or “master”. Understanding this simple structure might allow some design

rules to be found, to make a system of oscillators at prescribed positions and

orientations that will self-organize into a dynamical state with some desired

properties such as inducing a fluid flow over a length scale larger than the

distance between neighbouring oscillators.

In Fig. 6.8(a), the bottom beads 1 and 2 are oscillating along orthogonal axes

and are not coupled directly. However each of the two first beads are coupled

to the top bead 3 and we can expect synchronization of the bottom beads

through the top one.

The equations of motion given by the effective Oseen tensor are

v1 =
1

γ
(F1 + sF3)

v2 =
1

γ
(F2 + uF3)

v3 =
1

γ
(sF1 + uF2 + F3)

, (6.17)
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Figure 6.8: Coupling through a “master bead”. In the configuration
shown in (a), the bottom row beads are not directly coupled. However the
presence of the top bead leads to their correlation. By simply tuning the
orientation of the top “master” bead, it is possible to switch from in-phase,
through no coupling, to antiphase motion of the bottom beads, as shown
in (b).
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with
s =

3a

16d

(
5 cos θ3 +

√
3 sin θ3

)
=

3
√

7a

8d
sin(θ3 − θs)

u =
3a

16d

(
−
√

3 cos θ3 + 7 sin θ3

)
=

3
√

13a

8d
sin(θ3 − θu)

, (6.18)

where θs = − arcsin
(

5
2
√

7

)
≈ −1.24 rad and θu = arccos

(
7

2
√

13

)
≈ 0.24 rad.

As bead 1 is coupled to bead 3 with a coefficient s and bead 2 is coupled to

bead 3 with a coefficient u, the coupling term between 1 and 2 is expected to

be of the form su:

C12(θ3) = su =
9
√

91

64

(a
d

)2

sin(θ3 − θs) sin(θ3 − θu). (6.19)

This second order coupling term between bead 1 and bead 2 is not null in

most of the cases. Between 0 and π, |C12| is maximum for θ3 = 1.07 and

2.64 rad and it is null for θ3 = 0.24 (u = 0) and 1.90 rad (s = 0).

An order parameter Q12 (similar to Q in Chapter 5) can be defined to describe

the state of synchronization between beads 1 and 2, by taking the product of

the instantaneous trap states σ1(t) = ±1 and σ2(t) = ±1. This is done as an

average over the experiment duration ttot:

〈Q12〉 =
1

ttot

∫ ttot

0

dt σ1(t)σ2(t) . (6.20)

In Chapter 5 the directions were parallel, and, by convention, Q = 1

represented antiphase motion, and Q = −1 in-phase motion. Here, because

the oscillators 1 and 2 are orthogonal, the definition of “in-phase” and

“antiphase” are not obvious, and we have picked an arbitrary choice of the

sign for Q12. The theoretical coupling strength C12 reproduces the same

θ3 dependence on the state of correlation as seen experimentally in the

correlations between bead 1 and bead 2, shown by Q12 in Fig. 6.8(b). In

particular the expected maxima and points of zero coupling occur exactly at

the master angle θ3 expected theoretically.

The master bead can induce a (weak) P or AP synchronization, as well as no
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6.5. Experimental examples of configurations of oscillators

synchronization, depending on the choice of θ3. This can be “exploited” to

construct more complex collective dynamics, as explored below.

6.5.4 Nine beads

Here a system is made, as shown in Fig. 6.1 and Fig. 6.9(a), in which the

nearest neighbour bottom beads are not directly coupled with each other. This

is a more complex arrangement than before, but the nine modes are readily

calculated from the effective Oseen tensor; the corresponding eigenvalues are

γλ = {0.6320, 0.6541, 0.7969, 0.8347, 0.8566, 0.9314, 1.2393, 1.2820, 1.7731}.
As expected, the modes with lowest eigenvalue dominate the experimentally

observed steady state solution, see Fig. 6.9(b).
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Figure 6.9: (a) A configuration of nine beads (a corresponding image from
this experiment is shown in Fig. 6.1), in which the bottom row nearest
neighbours are not directly coupled together. The top row beads are
coupled to both nearest neighbours on the bottom row, generalizing the
3-bead “master bead” arrangement investigated in Fig. 6.8. (b) Modes for
the configuration in panel (a). As seen in the dominant modes 1 and 2,
with this spatial configuration the top row induces coupling of the bottom
row with short length scale (nearest neighbour) patterns. The eigenvalues
of this system are listed in the text, and the longest relaxation time modes
are seen experimentally to dominate the steady state dynamics. A spatial
arrangement with large scale correlations is shown in Section 6.5.5.
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6.5.5 Large collective wavelengths in large arrays

The knowledge built with experimental systems gives confidence that as a

general principle the longest lived normal mode will dominate the steady state

dynamics for hydrodynamically coupled systems driven by the “geometric

switch” rule. The effective Oseen tensor can be readily diagonalized for

systems of thousands of oscillators. This should enable configurations to

be tested to find patterns that will synchronize into large scale collective

dynamics. As a proof of principle, a 2 × 100 array is considered, testing the

effect of choosing angles and distances to show a phase pattern that evolves

with a large length scale.

As for the case of nine beads, the lower set of beads is configured with the

nearest neighbours vertical/horizontal, so not directly coupled. If beads are

put on the top row with a fixed direction, as was the case for nine beads,

this leads to collective synchronization, but the emergent states have very

short length scale: two consecutive horizontal oscillators move mainly in

antiphase. One way to design a system in which the dominant mode has large

wavelength (which presumably could be a feature of biological metachronal

waves) is to embed a spatial frequency in the structure of the oscillators. In the

configuration sketched in Fig. 6.10(a), where only a 9-bead out of 100 section

on the bottom row are shown, the top row beads are set to oscillate at angles

θi that rotate by π radians over p beads. The period p was tested in a wide

range; data in Fig. 6.10(b,c) is for p = 20. What emerges clearly is that the

longest lived modes (the first four are shown in the figure) have a large length

scale, which was “coded” in the geometric arrangement (the orientational

order in this case). Comparing panels (b) and (c), the observation can be

made that subtle adjustments in the positional arrangement influence the

details of the dominant eigenmodes, but their large scale structure remains

unaffected. Such adjustments are the key to designing arrays to optimally

generate particular flow patterns — but as remarked often in this work,

this requires either obtaining the deterministic solutions, running a Brownian

dynamics simulation, or performing the experiment: the first approach is

difficult, and the last two become impractical above a few hundred particles

(simulations) or a few tens (driving with optical traps). The set of systems for

121



6. DYNAMICS IN SYSTEMS OF MANY ROWERS

−0.01

0

0.01

A
m

p
li
tu

d
e

20 40 60 80 100

−0.02

0

0.02

Bottom oscillator index

A
m

p
li
tu

d
e

d

d

(a)
shift

(b)

(c)

Figure 6.10: (a) Sketch of a configuration in which the lower row nearest
neighbours are not coupled directly, and the top row induces coupling. Only
a part of the system, which is made up of 2 × 100 beads, is drawn here.
The angles in the top row are chosen so that an angle of π is rotated over
20 beads. This spatial structure is observed in the four longest lived modes,
represented in (b) by showing the amplitude of the mode on the odd-index
bottom row beads (blue, green, red, cyan solid lines, from mode 1 to 4
respectively). In the system studied in (b), the top row beads are staggered
exactly at the mid point between beads on the bottom row, whereas in
(c) the top row beads are shifted by 0.4d from the mid-point. In all cases
d = 8µm, and radius a = 1.74µm, as in the rest of this chapter.

which we can get steady state dynamics is therefore limited, but the normal

modes remain easily computable for much larger arrays. This is what makes

simple models powerful in terms of establishing a “bottom-up” prediction of

emerging properties. The complementary challenge, possibly more difficult,

remains to determine the microscopic effective properties from the observation

of collective dynamics in a large system, for example an array of biological cilia.
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6.6. Conclusions on predicting the dynamics of several rowers

6.6 Conclusions on predicting the dynamics

of configurations of several rowers

It has been shown that through the analyzis of the mean configurations

(position and angles) of driven oscillators we can predict the main properties

of the steady state of the collective system undergoing geometric switch

oscillations. The method is very general and can describe any planar

configuration of oscillators. The mode that contributes the most (and hence

sets the symmetry) of the steady state solution is that one with the longest

relaxation time. It is remarkable that in this (nonlinear, strongly coupled

and actively driven) system, it is possible to make predictions on the out of

equilibrium behaviour, based purely on static equilibrium properties.

Periodic solutions of the dynamical system, deterministic i.e. without noise,

are a basic ingredient in understanding and predicting the behaviour of the

physical system. In general, one such solution, we may call this fundamental, is

the attractive trajectory for every initial condition. Other periodic trajectories

are unstable. Different orientations of the line of oscillations of the beads

and different average distances of the beads affect the hydrodynamic coupling

and change the shape of the periodic solutions, still leading the system to

synchronization. The effect of the thermal noise is two-fold: (i) it distorts

the analytic fundamental solution, leading to a measured fraction fn larger

than expected from the theoretical fraction evaluated from the fundamental

solution; (ii) it produces transitions from the fundamental solution to another,

unstable, periodic solution. In these unstable solutions, the normal modes

associated to the longest relaxation time sometimes have smaller contribution

than normal modes with shorter relaxation times. We cannot at the moment

separate these two, and we have simply shown that in a variety of systems the

measured fraction f1, associated with the normal mode with longest relaxation

time, is always larger than other fractions.

We have shown that in certain geometrical arrangements, the position and

orientation of one of the oscillators (having “free” phase, same as the others) is

particularly important for the collective symmetry that arises; this oscillator

has been called a “master” bead. Of possible interest for future work are
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6. DYNAMICS IN SYSTEMS OF MANY ROWERS

the ideas of having one or more oscillators with fixed-phase and the related

question of phase front propagation upon an external localized perturbation.

While much work remains to be done to explain in detail the properties

of biological cilia, and biologically observed metachronal waves, this shows

that in order to understand a phenomenon that emerges at a certain level of

complexity (here, the collective dynamics of many cilia), it can be valuable to

coarse grain the degrees of freedom of the lower-level elements (here the cilia,

which are themselves complex systems, and are reduced to very simple phase

oscillators).
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Chapter 7

Alignment of rowers with

orientational freedom

7.1 Introduction

During their growth stage, biological cilia in large arrays somehow must

align their plane of oscillation. This was briefly reviewed in Section 2.2.3.4

in Chapter 2. The conclusion, emerging principally from experimental

observations in biological tissues, is that cilia are assembled after the

directional symmetry of the tissue is already set, but they initially beat in

a random direction. Moreover, these experiments suggest that a positive

feedback of the fluid on the orientation of the cilia is initiated by the presence

of a directional net fluid flow: the cilia align their beating direction according

to the direction of the flow, and then contribute to enhancing that flow.

This chapter presents an alternative process to explain the emergence of polar

order by hydrodynamic coupling, supported by simulations and a theoretical

argument. The model does not require an average net flow, so that the

study differs from [122]. Instead, it involves the time-dependence of the

flow generated locally by each cilium, and is therefore related to the relative

phase differences between the cilia and hence to the shape of the beating

cycle of a single cilium. It is an attempt to explore whether the collective
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7. ALIGNMENT OF ROWERS WITH ORIENTATIONAL FREEDOM

interaction through hydrodynamic interaction can feasibly explain (a) the very

robust alignment of basal bodies with each other inside each cell, and (b) the

alignment to the axis of the developing tissue. It is found that alignment can

emerge spontaneously for certain spatial arrangements of oscillators.

In the spirit of a reductionist model, the highly coarse-grained rower model is

used to mimic a cilium, with some modifications in order to allow its beating

direction to vary. As in the previous chapters, a great number of factors are

neglected: an unbounded fluid (no wall) is assumed, the viscosity is supposed

constant (Newtonian fluid), and oscillators are kept far apart.

Despite all these simplifications, the model remains very rich: the basic

dynamical rule for each cilium, together with the many-body fluid flow

interactions which couple all the active elements with each other, lead

to synchronization and polar order in a variety of collective dynamical

behaviours. In Chapter 5, it was shown that the curvature of the driving

forces controls the state of synchronization of two rowers. In this chapter, it

will be seen that this parameter also plays a crucial role in the emergence of

polar order in large arrays of rowers. The model is also used to investigate

the importance of the geometric placement of the oscillators, in particular the

role of local structure (lattice) and boundary conditions.

7.2 Model of active oscillators with orienta-

tional freedom

A modified model of rowers is used here to describe motile cilia. Fig. 7.1(a)

recalls the geometric switch, already used before and detailed in Section 2.3.2,

with the only difference being that the amplitude of the oscillations is called

2Rg here instead of A. As in Chapter 5, various external driving potentials

are used: U = k(x − x0)α, with x0 the position of the active trap. In this

chapter, only two values of α are used: 0.7 and 2, that are respectively leading

to strong in-phase and antiphase synchronization of two oscillators as shown

in Chapter 5.
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Figure 7.1: (a) One-dimensional model of oscillator. The colloidal particle
is driven by two traps A and B switching on and off alternately (with
harmonic potentials in this sketch: α = 2). The traps switch when the
particle reaches a distance ς from the centre of the active trap, leading
to oscillations with a constant amplitude 2Rg. (b) The oscillator in (a) is
modified to allow freedom in its direction of oscillation θ. When the particle
is at a radial position greater than Rf in the (x, y) plane, the trapping
constant in the direction orthogonal to θ is set to 0. Furthermore, when
the active trap is also in the same direction as θ, the trap will follow the
angular position of the particle. The coloured track of the particle position
over a few cycles shows a slow deviation of the angular position. The trap
positions are indicated by the grey lines. (c) Evolution of the active trap’s
angle corresponding to the track in (b). The sharp jumps correspond to
trap switches and the slow deviation occurs because of the allowed freedom
between Rf and Rg, just before every trap switch.
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In order to add freedom in the direction of oscillation of the rower, the particle

and the traps are allowed to move in the direction orthogonal to the direction

defined by the centre of trap A and trap B [Fig. 7.1(b)]: in the 2-dimensional

plane, the bead can move in a disk of radius Rg and the traps can move

on a circle of radius Rg + ς. The angular freedom is implemented such that

the trap moves by following the angular position of the bead only if (i) the

bead is outside the disk of radius Rf and (ii) it is on the side of the active

trap. When condition (i) is satisfied, the orthogonal trapping force is set to

0; otherwise it is set to a high value such that the bead is strongly confined

along the direction defined by the traps. The radius Rf defining the boundary

between angular freedom and confinement is a parameter that controls how

much angular freedom is allowed. Condition (ii) ensures that an orthogonal

displacement of the particle when it is approaching the active trap will not be

cancelled by a possible orthogonal displacement in the opposite direction just

after the trap switched. Fig. 7.1(b) shows the track of the particle position of

a single oscillator over a few cycles of oscillation. The direction of oscillation

is slightly changing because of the freedom of rotation when conditions (i)

and (ii) are satisfied. Since the particle is not coupled in this figure to any

other oscillator, the direction is only changing because of free diffusion of

the particle. Fig. 7.1(c) represents the direction of the active trap. The

square-like shape is due to the switching between traps A and B, and each

jump corresponds to an angular change of π. The angular freedom acts before

a trap switch, as a slight change of the trap angle. Since this work focuses on

the alignment of oscillators, all angles in later figures will be plotted modulo

π in order to remove the square-like shape in the graphs.

7.3 Alignment of two oscillators

7.3.1 Numerical results

In this section, the behaviour of two oscillators, set apart by a distance

d = 10 µm is studied. The hydrodynamic interaction between the spheres

is described by the Oseen tensor, hence assuming a bulk fluid, and the
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7.3. Alignment of two oscillators

Figure 7.2: (a) Simulated tracks of two beads in oscillators centred on
O1 and O2 (increasing time from blue to red). The angular positions are
coupled by the hydrodynamic interaction between the two beads, leading to
alignment along x. (b) x position of the two beads. The positions oscillate
and synchronize in a few cycles. The amplitude moves slowly because the
positions with varying angles are projected along x. (c) Angle of the trap
for each particle. The angle is plotted modulo π, in order to hide the effect
of the traps’ switches. The angles converge to 0, but with a much longer
time scale than the synchronization time scale. In all the figures, unless
explicitly specified, most of the parameters for simulations are matching
typical cilia: d = 10 µm, a = 0.45 µm (see Section C.4 for an explanation
on this value), Rg = 2 µm, Rf = 1 µm, η = 1 mPa·s, α = 0.7, T = 296 K
and k is set such that the frequency of oscillations is 30 Hz (with no thermal
fluctuations).
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Figure 7.3: Distributions of the traps’ angles (modulo π) for two
oscillators in the geometric configuration shown in Fig. 7.2. The axes on the
graphs are θ1 and θ2 in radians and the colour scale is dark (less probable)
to bright (most probable). Distributions are plotted for different values
of Rf and α for 3000 s long simulations. In the wide range of Rf/Rg
from 0.2 to 0.8, the angles align to (0, 0) when α = 0.7. The alignment
occurs in the direction defined by the line joining the two centres of the
oscillators (from which the angles are measured). For α = 2, the angles
do not converge, but tend to explore states close to the locus of points for
which the hydrodynamic coupling along the directions of oscillations is 0.
Zero-rr-coupling lines, satisfying hrr(θ1, θ2) = 0 are represented in black,
see Section 7.3.2.

simulations include thermal noise. Fig. 7.2 shows a simulation for α = 0.7

and Rf/Rg = 0.5. The other parameters are set to values characteristic

of cilia and are given in Fig. 7.2. The relative state of the oscillators has

two features. First, the oscillations synchronize in phase within a few cycles

[Fig. 7.2(b)] (typically 4 cycles, with the parameters used in this chapter).

The synchronized state agrees with the results in Chapter 5 and [146].

Furthermore, the directions of the two oscillators converge to 0 rad, as shown

in Fig. 7.2(c). The characteristic time to converge is however much higher

than the time to synchronize: about 12 cycles for Rf/Rg = 0.5.

When varying α and Rf , different behaviours can be obtained. This is

summarized in Fig. 7.3 showing the distribution of the angles (θ1, θ2) of

the active traps for each oscillator, when running 3000 s long simulations.

For α = 0.7, leading to in-phase oscillations, the angles converge to (0, 0)

for all values of Rf/Rg except 0. When Rf/Rg = 0, thermal fluctuations

tend to randomize the angle of the oscillators each time they cross their

centre O1 and O2, resulting in a uniform (θ1, θ2) distribution. This also
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broadens the peak at (0, 0) when Rf/Rg ≈ 0. The case of α = 2, which

leads to oscillations in antiphase, is more complex. For the same reason

as before, the angles distribution is uniform for Rf/Rg = 0. When this

ratio is increased, the distribution shows peaks at (0, 0) (Rf/Rg = 0.05),

a locus of angles avoiding the (0, 0) alignment (0.2 ≤ Rf/Rg ≤ 0.8) and again

convergence to (0, 0) (Rf/Rg = 0.95). In the middle-range of angular freedoms

0.2 ≤ Rf/Rg ≤ 0.8, the two oscillators do not align. Instead, the system tends

to stay in configurations that minimize the hydrodynamic coupling between

the particles [for example the (0, π/2) configuration].

7.3.2 An analytical explanation

A model to explain the alignment properties observed in the simulations

above is derived here. For simplicity, Brownian fluctuations are neglected,

in order to reduce the question to a problem of convergence of the angles

of the two oscillators. The distributions in Fig. 7.3 in the middle-range of

Rf/Rg can be explained for both α > 1 and α < 1 by a simple treatment in

which the synchronization of the oscillators and their alignment are considered

separately.

The state of an oscillator is described by the position r of the particle, the

angle of the oscillator (in [0, π[) and a variable σ = ±1 indicating the direction

along θ where the trap is. The first and third parameters can be merged into

a single parameter describing the “geometric phase”, φ (in [0, 2π[). Therefore

the state of the oscillator is fully described by two parameters: φ and θ.

The evolution in time of φ1, θ1 (left oscillator), φ2 and θ2 (right oscillator)

is a complex problem in which the four variables are coupled. However, in

the middle-range of Rf/Rg, the phase difference φ2 − φ1 converges with a

much lower relaxation time compared to the characteristic relaxation time

of the angles θ1 and θ2. When looking at the alignment properties of the

oscillators, at time scales at which the directions move, it can be assumed that

the synchronization of φ1 and φ2 occurs instantaneously: in-phase if α < 1

or in antiphase if α > 1, as described by the theory for the one-dimensional

version of the oscillator in Chapter 5. The solving of the evolution of the

131



7. ALIGNMENT OF ROWERS WITH ORIENTATIONAL FREEDOM

system is reduced to the following question: How do (θ1, θ2) evolve in time

when the oscillations are assumed in phase (if α < 1) or in antiphase (if

α > 1)?

Starting from an initial condition (θ1, θ2) of the traps’ positions when the beads

passO1 andO2, the angles after the traps switched for both beads become (θ1+

∆θ1, θ2 + ∆θ2). It is convenient to introduce here three frames in Fig. 7.2(a):

(êx, êy), (êr1 , êθ1) and (êr2 , êθ2). When the particle i is approaching its active

trap, it will undergo the change of angle ∆θi when it moves from the position

Rf to Rg. ∆θi is related to the velocity of the particle vθi along the orthogonal

direction and to the time interval during which the particle moves from Rf to

Rg in the radial direction:

∆θi = σi

∫ tg,i

tf,i

dt
vθi
r
, (7.1)

where tf,i and tg,i are the instants at which the particle reaches a radial

position Rf and Rg respectively. σi is the variable describing which of the

two traps that is driving the oscillator i is active: σi = 1 if the active trap is

in the direction of êr, or σi = −1 if it is in the opposite direction. Between

these two positions, the orthogonal trapping force is zero. Neglecting thermal

fluctuations, the only contribution to vθi is from the hydrodynamic coupling.

The coupling is described by the Oseen tensor that relates the velocities vi of

the particles to the driving forces Fj acting on them:{
v1 = H1,1F1 + H1,2F2

v2 = H2,2F2 + H2,1F1

, (7.2)

with H the Oseen tensor given in Section 1.6. In its expression, the

inter-particle distance is supposed constant to the distance between the centres

of the oscillators: r1,2 ≈ d, which is valid when 2Rg � d.

Introducing radial driving forces Fj = Fj êrj in Eq. (7.2) and using Eq. (7.1)

leads to {
∆θ1 = σ1σ2hrθ(θ1, θ2)∆θ0

∆θ2 = σ1σ2hrθ(θ2, θ1)∆θ0

, (7.3)
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with

hrθ(θ1, θ2) = cos θ1 sin θ2 − 2 sin θ1 cos θ2 (7.4)

and

∆θ0 =
ε

γ

∫ tg

tf

dt
F (r)

r
. (7.5)

Here, ε = 3a/(4d), γ = 6πηa and F (r) is the force from the driving potential,

which has the same shape from U(r) ∼ rα for the two oscillators, so that

F (ri) = αk(Rg + ς − ri)α−1 . (7.6)

To write Eqs. (7.3), (7.4) and (7.5), it is assumed that the variations in

angle in a half-cycle are small so that the function hrθ can be put out of

the integral in Eq. (7.1). Writing the equations to the highest order, the tf,i

and tg,i integration boundaries can also be replaced by generic variables tf

and tg corresponding to the times at which an uncoupled oscillator would

be respectively at positions Rf and Rg, and r = r(t) ≈ ri(t) corresponds to

the radial position of that uncoupled oscillator. With these approximations,

∆θ0 does not depend on the angles θ1 and θ2, nor on the oscillator. This is

a constant that depends on how the angular freedom is implemented in the

model of oscillator. The hrθ(θ1, θ2) term, however, is related to the variation

in the hydrodynamic coupling of a bead moving along the radial direction

with the velocity of the other bead along the orthogonal direction, depending

on the angles of the oscillators.

To go further in the calculation, it is now necessary to include that oscillations

are either in phase, if α < 1, or in antiphase if α > 1. This is introduced

through a variable δ, equal to 1 for oscillations in phase and to −1 for

oscillations in antiphase. The state of synchronization δ determines the sign

of the product σ1σ2 [related to the sign of the coupling function C(θ1, θ2) in

Eq. (6.14)]. More precisely,

σ1σ2 = δ sign[hrr(θ1, θ2)] (7.7)

with

hrr(θ1, θ2) = 2 cos θ1 cos θ2 − sin θ1 sin θ2 . (7.8)
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Figure 7.4: Theoretical convergence maps for two oscillators in the
configuration shown in Fig. 7.3 for (a) α < 1 and (b) α > 1. The set
of angles (θ1, θ2) evolves in time by following the arrows. When α < 1,
the angles converge to (0, 0) (large dots). When α > 1, the direction of
the arrows are all swapped, and the angles converge towards a point on the
blue zero-rr-coupling lines, leading to a temporary loss of synchronization.
These graphs agree with the distributions in Fig. 7.3 in the middle-range
of Rf/Rg.

The quantity γεhrr represents the coupling force on bead 1 and projected

along êr1 , coming from a radial force acting on bead 2 along êr2 . Eqs. (7.3)

and (7.7) lead to the iterative map{
∆θ1 = δ sign(hrr)hrθ(θ1, θ2)∆θ0

∆θ2 = δ sign(hrr)hrθ(θ2, θ1)∆θ0

. (7.9)

This system of equations can be studied by linear stability analyzis for δ =

−1 and δ = 1 (∆θ0 being positive), by separating the regions of different

signs. Instead, in Fig. 7.4, Eq. (7.9) is simply plotted in the (θ1, θ2) plane by

representing the evolution of an initial condition (θ1, θ2) as an arrow centred

on (θ1, θ2) and of direction (∆θ1,∆θ2). For α < 1 [δ = 1, Fig. 7.4(a)], the

system converges from any initial condition to (θ1, θ2) = (0, 0), in agreement

with the simulations in Fig. 7.3. For α > 1, in Fig. 7.4(b), the system moves

towards a position on the locus of points defined by hrr(θ1, θ2) = 0 (solid

lines). However, because the angular speed does not converge to zero around

this line, the system will jump from one side to the other side of the line. This

results in a change of sign of hrr. Therefore, the oscillations that were in the

synchronized state in antiphase before the jump, become in phase. The system
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will tend to return to the stable state of oscillations in phase, but since the

rr-coupling is close to 0 nearby the line, this takes several cycles of oscillations.

Therefore, when crossing the zero-rr-coupling line, the angles will move away

from the line for several cycles, following, for a while, arrows in the opposite

direction as the ones indicated in Fig. 7.4(b). Once the system has returned

in the synchronized state in antiphase, the angles will follow the convergence

map for α > 1 again. Therefore the system constantly oscillates between the

two sides of the zero-rr-coupling line, with a large amplitude, related to how

fast the oscillations converge to the synchronized state. This agrees again with

the simulations in Fig. 7.3 in the middle-range for Rf/Rg. When Rf ∼ Rg,

the assumption that oscillations are exactly in phase or in antiphase becomes

wrong, as thermal fluctuations and coupling introduce little delays between

the switches of the traps of the two oscillators. When the delays become of

the order of the time an oscillator spends in the 0.2 ≤ Rf/Rg ≤ 0.8 region,

Eq. (7.7) does not apply.

To summarize, when α < 1, the oscillators align to the direction of highest

synchronization strength (or highest rr-coupling), while for α > 1, they

take orientations that minimize the synchronization and the system is barely

synchronized.

7.4 Linear array of oscillators

When increasing the number of oscillators, various geometric configurations

can be studied numerically; the resultant dynamics of the system can be

represented by plotting the angle of each oscillator as a function of time.

Fig. 7.5 shows simulations of 60 oscillators equally spaced by a distance d =

10 µm along a line [“chain” configuration, (a) to (d)] and a circle “ring”

configuration [(e) to (h)]. In the chain configuration, the angles are measured

from the direction of the line of oscillators, while in the ring configurations

the angle of an oscillator is measured from the tangent to the circle at the

position of the oscillator. As for two oscillators, the cases α = 0.7 (typical for

α < 1) and α = 2 (typical for α > 1) lead to different behaviours. For α < 1,
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Figure 7.5: Traps angles depending on time in chains [(a) to (d)] and
rings [(e) to (h)] of 60 oscillators for α = 0.7 and 2, at low (0.01 K) and
room (296 K) temperature (Rf = 0.7 µm). Angles are measured from the
axis of the line in the chain configuration and from the tangent to the circle
at the position of the oscillator for the ring configuration. For α = 0.7,
most of the oscillators align to θ = 0 (overall angle distribution as inset),
while neighbouring oscillators tend to have different angles when α = 2.
Brownian motion, controlled by the temperature, has very little effect on
the patterns of angles.

two neighbouring oscillators tend to be parallel. In the chain configuration,

the system shows a strong alignment of the oscillators along the direction of

the line (θi = 0). In the more symmetric ring configuration, the oscillators

tend to align tangentially to the circle (θi = 0 again). The alignment is

weaker in the ring configuration, as shown by the width of the peak in the

distribution of the angle displayed as insets in Fig. 7.5 (distributions over time

and oscillator index). In both chains and rings, the oscillators align in the

configuration that maximizes the hydrodynamic rr-coupling. For α > 1, the

graphs are more “granulated”: neighbouring oscillators tend to minimize their

coupling, leading to different angles between consecutive oscillators. However,

the average distribution shows a single, very wide peak at π/2, orthogonal to

the direction of the line in the chain and orthogonal to the tangent to the

circle in the ring. In all cases, the thermal noise has little effect on the width

of the peaks in the angle distribution for the parameters used here.
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7.5 2d arrays of oscillators

Cilia in biological systems are usually arranged on two-dimensional carpets

rather than chains or rings. To capture this, rectangular Nx × Ny arrays

of about 64 oscillators with square and hexagonal lattices are simulated.

Fig. 7.6 shows phase angles for two lattices, with T = 296 K. The distance

between neighbouring oscillators is kept the same between the two lattices,

and only simulations for α < 1 are shown, since α > 1 does not display

strong alignment properties. The angles are measured from the x axis, and

the oscillators are indexed as indicated in Fig. 7.6(a) and (d). The first result

is that the oscillators show a cooperative behaviour, and tend to align with

the same angle at a given time in the four configurations studied. This is even

visible in the highly symmetric 8× 8 square lattice simulation that shows no

preferred average direction of oscillation. The second result, shown by the

angle distributions in the insets, is that except for the 8 × 8 square lattice

simulation [Fig. 7.6(b)] the system has a preferred direction of either 0 or

π/2 rad. The preference for one direction could have two origins: the boundary

conditions (shape of the surface covered by the array), or the type (square or

hexagonal) and orientation of the lattice. The surface of the array is an

Nxd×Nyd rectangle for the square lattice and an Nxd× (
√

3/2)Nyd rectangle

for the hexagonal lattice. Therefore, the rectangular surface is stretched along

y in (c) and (f), stretched along x in (e) and a square in (b). It follows from the

angles distributions that the oscillators align along the direction of stretching

of the array, which is a configuration of higher rr-coupling than the other

axis of the rectangle. This behaviour is inherent to the higher hydrodynamic

coupling in the Oseen tensor in the x direction [3a/(2d)] than y direction

[3a/(4d)], for two particles at positions on the êx axis. The type of the lattice

has a negligible effect on the alignment compared to the aspect ratio of the

array.
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Figure 7.6: Evolution of the angles, and distributions in 2d arrays
oscillators on a square (b, c) and hexagonal (e, f) lattices in 8 × 8 (b, e)
and 7 × 9 (c, f) arrays for α = 0.7 (T = 296 K and Rf = 0.7 µm).
The oscillators are indexed as indicated in the geometric configurations
of the array represented in (a) and (b). The oscillators show a cooperative
behaviour by tending to have the same angle at a given time. The average
orientation is along the axis of the long edge of the rectangular array: the
angles distribution is centred on θ = 0 in (e), θ = π/2 in (c) and (f), and
uniform in the square configuration in (b).
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7.6 Discussion

The rower model oscillator was modified to add the ability to change

its direction of oscillation (the beating plane), in order to describe the

collective alignment of multiple cilia subject to hydrodynamic interaction.

The oscillation direction is free in the way that, on each cycle, it adjusts by

an angle proportional to the velocity of the fluid flow projected orthogonally to

the oscillator. While how this freedom is allowed in real cilia is not discussed,

many models can lead to a such response of the angle to an external flow.

A specific model was chosen in order to calculate its emergent properties,

but the details of how angular freedom is implemented are not crucial to the

results: the quantity ∆θ0 in Eq. (7.5) depends on the details, but this enters

as a constant in Eq. (7.3), setting the amplitude of the response to the flow.

It is the structure of this equation, that underlies the results, so other ways

to implement flexibility would lead to similar conclusions as the ones drawn

in this chapter.

The alignment properties of a system of oscillators depend on the details of

the driving force, which are matched very simply to the synchronized state

of a system of two oscillators. Here, the synchronized state is tuned by the

parameter α, which characterizes the driving force, and is either in-phase

or in antiphase. An empirical rule, that emerges from all the simulations

in this chapter, is that a given configuration of oscillators tends to put

itself in angular configurations of highest (for in-phase synchronization) or

lowest (antiphase synchronization) coupling (in absolute value) between the

oscillators, projected along their directions of oscillation (rr-coupling). This

rule is confirmed by a theoretical model in the case of two oscillators, for

which, the locus of maxima of |hrr| is reduced to a single point (θ1, θ2) when

α < 1 and the locus of minima is a curve when α > 1. For that reason, and

because synchronization tends to be lost near the zero-rr-coupling line, only

oscillators with an in-phase stable state display strong alignment. This study

provides a link between the beating pattern of the cilia (widely believed to

determine the synchronized state) and the orientation in arrays of cilia. It

is interesting to note here that “real” cilia actually beat in phase with their

neighbours. This makes the case α < 1 more relevant for cilia, and the study
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shows that it is the case that leads to alignment. This work also suggests

that the loss of polar order in motile mutant cilia could be due to a modified

driving potential acting on them.

While the meaning of “highest” and “lowest” coupling in a system of more

than two oscillators is not precisely defined, simulations with large number of

oscillators seem to confirm a similar rule that could be used to predict the state

of alignment of a system. The rule could be related to how the relaxation times

of the normal modes of oscillation depend on the angles, as the normal modes

already play a key role in determining the state of synchronization, when no

angular freedom is added (see Chapter 6). Also, in an array of cilia, the

synchronized state as a metachronal wave can be seen as a state minimizing

the energy required for the beating [123]. Similarly, the rule aligning the

oscillators could therefore be related to a problem of energy minimization or

maximization.

Alignment properties in large arrays is described both in terms of cooperative

behaviour between oscillators and in estimations of the preferred direction

of oscillation (if any). The rule sets conditions on both properties. States

with all oscillators aligned in the same direction at a given time have high

rr-coupling and are therefore seen in all the simulations for α < 1, leading to

high cooperativity between the oscillators. Non-symmetric configurations such

as chains of oscillators or rectangular arrays also tend to confine the angles in

a particular direction, which is the direction in which the system is elongated.

In 2d arrays, the type of lattice could also affect the alignment of oscillators.

However, it appears that in arrays of below ∼ 100 oscillators, the effect of

the shape of the array is more important than the lattice to determine the

preferred direction of oscillation. It can be noted here that different lattices

exist in biological tissues: cells in some systems as e.g. Paramecium show

very regularly spaced cilia [108, 185], possibly defining axes of alignment,

whereas in the airways the cilia distribution is more random within cells, and

the distribution of the multiciliated cells themselves is also not completely

regular.

This chapter used parameters close to motile cilia conditions (except for d).

The size of the array varies a lot with the biological system: thousands of cilia
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can be arranged in a dense array like in the alga Volvox carteri [109], or in

Paramecium [186]; or a few hundred cilia can be packed on the surface of a

multi-ciliated airway cell, this cluster interacting with the clusters on other

cells in the tissue [116]. In all these cases, the boundary conditions could have

a determinant role in the choice of the direction of alignment.

A quantitative connection to the biological question of how airway epithelium

gains its full organization in development (once cells are elongated) will clearly

need further development of this or related models. In this biological system,

the cells are elongated along the proximal/distal axis, conferring polarity to

the airway tissue as a whole, and the cilia within each cell become aligned to

each other. Furthermore they become aligned with the tissue axis.

As a consequence of the small size of cilia, the Brownian motion leads to

non-negligible fluctuations of the phase of the oscillators. However, the

simulations with large number of oscillators suggest that the thermal noise

is irrelevent when looking at the alignment properties of the oscillators.

The current model and the behaviour highlighted in this chapter show that

hydrodynamic coupling is able, at least in principle and qualitatively, to lead

to orientation of active oscillators, and that the resulting collective dynamical

state responds to the symmetry of the shape of the array (symmetry of the

boundary condition). The case of 2d arrays with cilia described by a driving

force with α < 1 could explain how cilia distributed on the surface of an

elongated cell align with each other, and pick the axis of stroke from the cell’s

elongation. In this speculative scenario, the microtubule networks which link

the basal bodies within the cells, and are seen to correlate with polarity [114],

might act to freeze in place the orientation of the basal bodies.

Spontaneous alignment is observed here, in the absence of an external flow.

Various ciliated tissues (described in Section 2.2.3.4) initially develop in the

absence of flow. The presence of a directed external flow (which is possible

in some systems, such as the developing airways) would be an even stronger

aligning factor. In general, the importance at various stages of development of

flow and mechanical force transduction, which are undeniably present between

cilia, remain an open question clearly requiring multidisciplinary approaches.
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Synchronization of rotors
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Chapter 8

Optimal synchronization of two

rotors

8.1 Introduction

Part III focused on the first class of oscillators studied in this thesis, rowers.

From this point onwards, the synchronization of a second model, rotors, is

investigated. The rotor model is described in Section 2.3.1. Briefly, a rotor

corresponds to a colloidal particle driven by optical tweezers along a predefined

orbit r(φ) and with a driving force F (φ) that is tangent to the orbit. Since

the orbit is closed, r and F can be written as a function of a phase parameter

φ in [0, 2π].

A general principle is that synchronization at low Re is possible only by

breaking time reversal symmetry (see Chapter 5 and [143, 187]). Section 2.3.1

summarized two mechanisms promoting symmetry breaking, and hence

synchronization: the choice of the functions r(φ) and F (φ) (leading to

phase-locking called here “Golestanian synchronization” [142, 143]), and

possible flexibility of the particle position along the trajectory (“Lenz

synchronization” [88]). Two rotors, driven along circular trajectories r(φ) =

r0êr(φ), are considered in this chapter. The flexibility in the orbit is

characterized by a harmonic restoring force of stiffness kr. This system,
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Figure 8.1: Two colloidal rotors are obtained by driving particles along
predefined closed circular trajectories. The driving forces have a component
F (φi) parallel to the tangent to the circle and a component in the radial
direction, represented as springs. The traps’ minima are marked by red
crosses. The F driving component may be maintained constant, or may
be modulated as a predefined function of the phase angle φ (see Fig. 8.2).
φ is free to vary (i.e. its time dependence is not predefined) under the net
action of the driving force and any other forces acting on the particle.

represented in Fig. 8.1, combines the Lenz and Golestanian models together.

In other words, Fig. 8.1 is a combination of the oscillators sketched in

Figures 2.9 and 2.10, as different functions F (φ) can be tested and flexibility

is present.

The two models have been developed separately, studied in numerical

simulations and/or by stability analyzis (without thermal noise), and two limit

cases can be considered. A force profile F (φ) = cnst corresponds to the Lenz

model only, that predicts synchronization in phase. There, synchronization

becomes stronger when flexibility is increased [88]. On the opposite, an infinite

stiffness kr is the limit of the Golestanian model of the rotor, in which the

bead is confined on the orbit. In this case, Uchida and Golestanian showed

in [142] that synchronization is optimal for a force profile of the form

F (φ) = F0[1− A2 sin(2φ)] (8.1)

with F0 and A2 ∈ [0, 1[ two constants. Synchronization is expected to be

stronger when A2 is increased. In the particular case where A2 = 0 and

kr =∞, the system should not synchronize.

In my work, initially two circular rotors are implemented experimentally. The

aim is, first to recover the decay times into the in-phase state in both the
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Lenz and Golestanian limits, and second to observe how strongly the system

synchronizes when both mechanisms could be relevant at the same time, when

kr <∞ and A2 6= 0, addressing the open question of the relative importance

of the two factors.

This work was done in collaboration with the group of Simon Hanna

(University of Bristol), involving Luke Debono, Stuart Box, Dave Phillips

and Stephen Simpson. Experiments and simulations (that include thermal

fluctuations) were conducted in both the Cambridge and Bristol groups.

However, this chapter and Appendix D only show experimental data from

my setup, and numerical data from Bristol, except where indicated otherwise.

The experiments in Bristol use holographic optical tweezers, rather than

acousto-optic deflectors to produce the potential landscapes.

8.2 Implementation of the experimental ro-

tors

The rotors with circular trajectories of radius r0 are implemented with the

optical tweezers by using the feedback-controlled force driving described in

Section 3.2.6, in which the position of the traps are updated based on the

position of the particles. Here, the traps are maintained a distance ε(φ) ahead

of the projection of the position of the particle on the predefined trajectory

(see Fig. 8.1). The optical force acting on the particle i ∈ {1, 2} is written

Fi = kε(φi)êφi − k(ri − r0)êri . (8.2)

The êφi component maintains the driving of the particles, while the radial êri
component is a restoring force that tends to keep the particle on the circle

of radius r0. Hence, the product kε(φi) determines the driving force and k

the flexibility. Since the parameters k (related to the intensity of the laser

beam) and ε(φ) (related to the way the traps are positioned in the real-time

feedback) are controlled independently in the experiments, it is possible to

vary the driving forces and the flexibility independently.
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Eq. (8.3) assumes that the traps, represented by red crosses in Fig. 8.1,

are harmonic (“simple traps” in Chapter 3). In practice, the use of simple

harmonic traps does not allow to vary the flexibility and the driving forces

in sufficiently wide ranges to highlight clearly the effect of both parameters

on synchronization. To increase the size of the range of flexibilities available

experimentally, complex potential landscapes are used (see Section 3.2.4). 21

simple traps with the same intensity are placed along a line in the êr direction

centred at the position of the red crosses in Fig. 8.1. While this does not

change a lot the force along the êφ direction, the flexibility along êr can

be tuned by controlling both the intensity of the traps and the length of

the segment of 21 simple traps. Increasing this length reduces the stiffness

in the radial direction, hence lowering the minimal stiffness experimentally

accessible. With the trapping lasers modulated to create a potential landscape

like the line segment above, the force acting on particle i can be rewritten

Fi = kφε(φi)êφi − kr(ri − r0)êri , (8.3)

with kφ depending mainly on the traps’ intensities and kr depending on both

the intensities and the size of the segment of simple traps. In the experiments

shown here the segment size has been varied from 0 to 4.4 µm.

Significant efforts are made to achieve the driving force profile F (φ). The

desired shape of the driving force is obtained by setting the function ε(φ)

(particle-to-trap distance in the êφ direction). Before a coupling experiment

is carried out, the driving force is calibrated on a single rotor, see Fig. 8.2.

Force profiles of the form given by Eq. (8.1) with F0 ≈ 5.9 pN were chosen

since they correspond to the most efficient profiles to generate synchronization

in circular trajectories [143]. For each set of parameters, a first profile is

measured on a single bead for which ε is set proportional to 1 − A2 sin(2φ).

Because of nonlinearities in the trapping force at displacements & 1 µm from

the trap centre, this profile does not match the expected function precisely, so

the relative difference between the expected and measured profiles is then used

as a factor c(φ) correcting the original profile into ε ∝ c(φ)[1− A2 sin(2φ)].
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Figure 8.2: The orbital velocity (proportional to the force at low
Re) can either be held constant, or modulated so that it is anisotropic:
the functional form of the force F (φ) = F0[1−A2 sin(2φ)] has been
chosen in this work, studying the effect of the modulation parameter A2

following [142]. The velocity of a single orbiting particle is shown here for
A2 = 0, 0.15, 0.3, 0.45, 0.6, 0.75 and 0.85 (increasing modulation). Markers
are measured velocities and lines are the expected shape, proportional to
[1−A2 sin(2φ)]. For high A2 it can be seen that the force saturates a little
for some angles, i.e. it is not possible to move any faster. Parameters are
a = 1.74 µm (silica beads), r0 = 3.2 µm and η = 6 mPa·s.
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8.3 Results

The relative phase of two rotors separated by a distance d can be measured.

This remains constant over successive cycles of oscillation if there is phase

locking and if there are no thermal fluctuations. In the systems studied here,

synchronization is always in phase (with small fluctuations due to Brownian

motion). Two measurements of the strength of synchronization are possible:

the time required to reach synchronization from an arbitrary initial condition,

or, exploiting the presence of Brownian noise, the relaxation time scale in the

autocorrelation of the phase difference at steady state. In both cases, the

“natural” unit of time is the period of one rotation.

Fig. 8.3 shows the effect of both parameters kr and A2 on synchronization.

The experiments confirm the two theoretical predictions from [88] and [142]

claiming that increasing the flexibility (by decreasing kr) or increasing the

asymmetry A2 of the driving potential should lead to stronger synchronization

(lower relaxation time).

Although the trends in Fig. 8.3 are very clear, the experimental relaxation

times appear systematically higher than in the simulations (Brownian

dynamics, with the Oseen tensor to describe the interaction between the

particles), i.e. the rotors synchronize less than expected. This problem is

investigated carefully in Appendix D and it appears that several factors are

increasing the relaxation time. The main contribution comes from the delay in

moving the traps ahead of the particles: simulations in Appendix D show that

realistic values of the experimental delay (5 to 20 ms) can lead to an increase

of the relaxation times by up to nearly a factor of 2. Smaller contributions

to the increase in relaxation time are attributed to wall effects and to a

detuning between the intrinsic periods of the two oscillators. The appendix

provides a detailed analyzis of the possible origins of the discrepancy between

experiments and simulations.
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Figure 8.3: Relaxation time depending on kr and A2 for the parameters
in Fig. 8.2 and d = 25.4 µm. In (a), kr is varied for A2 = 0 (4), 0.4 (◦) and
0.7 (�). In (b), A2 is varied for kr = 0.76 (4), 1.8 (◦) and 4.5 (�) pN/µm.
Decreasing kr and increasing A2 produces stronger synchronization. A
comparison with simulations is shown in Appendix D.
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8.4 Joining up the Lenz and Golestanian syn-

chronization models

The experiments above show clearly that both the radial flexibility and the

modulation of F (φ) contribute to the strength of synchronization. A rigorous

calculation of the strength of synchronization including both parameters can

be carried out, as done in [188], based on a calculation in [143] for a slightly

different system.

For small A2, the same result can be obtained by accounting by linear

superposition for both the Lenz (ΓL) and Golestanian (ΓG) decay rate

parameters (known respectively from [88] and [142]). The evolution of the

phase difference can be represented by a discrete equation of the form

∆φ(i+ 1)−∆φ(i) = −Γ∆φ(i) , (8.4)

where ∆φ = φ2−φ1, i indexes the cycle (counted on either rotor), and Γ is the

decay rate to the synchronized state. Then, Γ is the sum of the components

ΓL and ΓG:

Γ = ΓL + ΓG

= 2π
3a

4d

(
3F0

krr0

√
1− A2

2 + A2

)
. (8.5)

In Eq. (8.5), the term 3a/(4d) corresponds to the hydrodynamic coupling,

with a the beads’ radii and d the mean separation between the particles.

The two terms in brackets correspond respectively to the contribution of the

“Lenz model” (L), and the “Golestanian model” (G) to synchronization. Note

that the Lenz contribution depends itself also on A2, since the period of the

oscillators depends on the force profile. From Eq. (8.4), the relaxation time is

then related to ΓL and ΓG by

1

τ
= − ln [1− (ΓL + ΓG)] . (8.6)

This theoretical model combining both the L and G models is plotted
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Figure 8.4: Relaxation time depending on the Lenz (ΓL) and
Golestanian (ΓG) dimensionless control parameters. Simulations (circles)
are in excellent agreement with the theoretical model in Eqs. (8.5)
and (8.6) (coloured surface). The thick line separates the regions in
which synchronization is dominated by the flexibility of the rotor (Lenz
synchronization, LS), or by the angular modulation of the driving force
(Golestanian synchronization, GS). For ΓL+ΓG close to 0, synchronization
can be lost because of thermal fluctuations, but simulations were performed
in a range in which rotors are synchronized, for which the relaxation time
can be easily extracted.

in Fig. 8.4, and agrees very well with simulations (with no adjustable

parameters). Depending on the choice of parameters F0, kr, r0 and A2,

the synchronization can be dominated by either the Lenz or Golestanian

contribution. A threshold between these two regions can be defined when

the two terms in brackets in Eq. (8.5) are the same; this boundary line is

plotted in Fig. 8.4.

8.5 Effect of thermal fluctuations

Brownian motion leads to fluctuations of ∆φ over time. Fluctuations can be

estimated by analogy with a particle in a confining harmonic potential. The
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fluctuations in displacement x of such a particle satisfy, by the equipartition

theorem, 〈x2〉 = kBT/κ with κ the harmonic trapping constant. The

relaxation time of the position decaying to 0 in the confined particle problem

can then be matched with the relaxation time of the phase difference: γ/κ ∼
t0/Γ, where t0 is the intrinsic period of the rotors and γ = 6πηa the drag

coefficient. Since 〈x2〉 ∼ 〈(r∆φ)2〉, the relation leads to

〈
∆φ2

〉
∼ t0kBT

Γγr2
0

. (8.7)

Simulations in Fig. 8.5(a) show 〈∆φ2〉 plotted against the quantity above,

for a large variety of parameters; the data collapse onto lines, with a slope

depending only on A2. Since synchronization will be lost above a certain

threshold of 〈∆φ2〉, the scaling above gives insight into the range of parameters

that will allow synchronization in the presence of noise.

The slopes from panel (a) are plotted in Fig. 8.5(b), and show a non-trivial

dependence on A2, initially constant and then growing at larger A2. The

reason of this dependence on A2 is still unclear, but it can be noted that with

non-zero A2, the synchronization strength varies as the beads go around their

orbits. It would then be expected that the variance of fluctuations could be

affected in a way that is not simply described by the cycle-average of the

potential, as discussed in [189].

The dependence of 〈∆φ2〉 on temperature is shown in Fig. 8.5(c): at very low

temperatures it is linear, meaning that the phase difference can be described by

a variable confined around 0 with a harmonic effective restoring potential, as

explained previously. When the temperature increases, the variance becomes

super-linear, implying that the restoring strength is less than linear for large

phase shifts. At very high temperatures, synchronization is lost and the

distribution of ∆φ becomes uniform in the finite-range [0, 2π], so that the

variance converges to a constant value.
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Figure 8.5: Thermal noise leads to fluctuations of ∆φ around 0 (the
in-phase state). (a) Simulations at T = 10 K for variable values of A2, kr, a,
r0, F0, d, and η in a regime of small fluctuations of the phase difference. The
variance of ∆φ exhibits a linear dependence on the group t0kBT/(Γγr

2
0),

with a coefficient that depends only on A2. (b) The slopes of the data in
(a) have a non-trivial dependence on the modulation factor A2. (c) For
a = 1 µm, d = 20 µm, r0 = 2 µm, F0 = 16 pN, kr = 32 pN/µm and
A2 = 0.4, the temperature is varied. The line shows the variance from
Eq. (8.7).
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8.6 Outlook

The rotor model is promising as it can describe more oscillating objects than

the rower model, which is one-dimensional. The rower model might indeed be

a particular case of a Golestanian squeezed orbit. In the future, it should be

possible to parameterize and coarse-grain complex biological cilia, or flexible

artificial systems driven by complex mechanisms, into a corresponding system

of “rotors”. That would require to match the period, radius, deformability,

and angular anisotropy. The results obtained in this chapter will then allow

a direct understanding of the synchronization strength, particularly (a) its

magnitude relative to thermal noise (thus the likelihood of phase slips, and

loss of synchronization by thermal fluctuations), and (b) the main mechanism

determining it. Conversely, the results here also indicate that hydrodynamic

synchronization can be easily tuned through various parameters, and can be

made strongest by allowing simultaneously great deformability and significant

modulation of the orbital drive. It will be fascinating to explore where

biological systems have evolved on this parameter space, and to understand

the role of additional constraints such as optimal flow generation.
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Chapter 9

Synchronization of assemblies of

rotors

9.1 Introduction

Assemblies of more than two oscillators can exhibit various types of collective

behaviour. The elements can all oscillate in phase, or synchronize in other

phase-locked states characterized by phase differences between the oscillators

independent on time: φi+1(t)− φi(t) = Ci. Configurations of rowers can also

display more complex dynamics such as solutions periodic in time. This is the

case for rowers equally spaced on a circle and oscillating tangentially [154]. For

more general configurations, it is not obvious that periodic solutions exist, but

Chapter 6 described a method allowing to gain information on time-average

quantities (dominance of a mode of oscillation).

Cilia often synchronize in a metachronal wave, a phase-locked state for

which the constant Ci does not depend on the oscillator index i. It is

therefore important to search for such states in the simple models of cilia.

For example, metachronal waves were observed in simulations of chains of

rowers interacting through the Oseen tensor, without thermal noise [146]. The

simulations were also supported by an analytical model taking into account

only nearest-neighbours interactions. However, metachronal waves have never
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9. SYNCHRONIZATION OF ASSEMBLIES OF ROTORS

been seen before in experiments with rowers or rotors.

This chapter presents experiments on assemblies of rotors, driven along

circular trajectories by a constant force F (φ) = F0. It was shown in Chapter 8

that two such oscillators, synchronize in phase thanks to the radial flexibility

in their trajectories (Lenz model). Simulations by Niedermayer and Lenz [88]

suggest that, for large arrays of rotors, the radial stiffness is still a parameter

that controls the collective state of the array and that various phase-locked

states can be obtained. In particular, a linear chain of rotors with periodic

boundary conditions can synchronize in a metachronal wave state if the rotors

are flexible enough, and a linear chain with free boundary conditions can

show a phase-locked “chevron” state, for which the phase of the ith oscillator

(i ∈ {1, . . . , N}) is approximately [88]:

φi+1(t)− φi(t) ≈

{
χ if i < N/2

−χ else
(9.1)

with χ a positive constant. Other states, such as “tilted chevrons”

φi+1(t)− φi(t) ≈

{
χ0 + χ if i < N/2

χ0 − χ else
(9.2)

are also possible.

Here, several complex configurations of rotors are explored experimentally,

some aimed at finding metachronal waves. This is still ongoing work, and

most of the results are qualitative. In particular, some parameters were not

calibrated or measured. However, simple rules that could help in determining

the synchronized state of a given configuration are deduced empirically. In

particular, these rules can explain qualitatively the “chevron” state cited

above.
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9.2. Effect of the symmetry of the configuration on synchronization

9.2 Effect of the symmetry of the configura-

tion on the state of synchronization

9.2.1 In-phase synchronization in a symmetric configu-

ration

N rotors are arranged at the edges of a regular polygon with vertices size d

(see Fig. 9.1). The choice of the number of oscillators is limited experimentally

to N . 10, because of two reasons. First, the laser beam is shared between

all the oscillators. The trap stiffness is therefore smaller when the number of

beads is increased, and a too small optical trapping along z cannot overcome

the gravitational force. Second, increasing the number of oscillators increases

the time needed to analyze the bead positions, hence reducing the frame

rate that can be used in the feedback loop (see Section 3.2.6). To avoid any

undesirable effect of the feedback time, the time between two frames should

however remains negligible compared to the characteristic time scales in the

system, in particular, the rotors period and the relaxation time of the radial

position. Typically, frame rates of 200 fps or more should be used.

Figure 9.1: Ring configuration for N = 8 rotors.

Fig. 9.2 shows the phases of the oscillators φi depending on time for N = 8.

The parameters are η = 3 mPa·s, a = 1.74 µm, d = 7.0 µm, r0 = 1.6 µm,

F0 ≈ 3.9 pN and kr ≈ 2.5 pN/µm. The rotors are lying in a 2d plane at a
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Figure 9.2: Synchronization of eight rotors arranged on a ring with
regular spacing. The system synchronizes in phase.

distance h = 50 µm away from the coverslip.

The phase of the oscillator i is measured as the angle the bead makes on

its circular trajectory with an arbitrary horizontal axis êx. Fig. 9.2 displays

vertical wave fronts that are characteristic of a synchronized state in phase.

In this figure, the initial condition was with all the oscillators in phase. Other

initial conditions of the form φi+1(0)−φi(0) = χ have been tested for different

values of χ. In all cases the system was converging in the in-phase phase-locked

state

φi+1(t)− φi(t) ≈ 0 . (9.3)

Thermal fluctuations have little effect on the synchronization state.

Other rings with N = 3 and N = 6 have been tested, and all led to

synchronization in phase. From Chapter 8, it is also known that two

rotors synchronize in phase. An empirical rule to determine the state of

synchronization can be deduced: symmetric configurations of rotors have a

preference to synchronize in phase. By “symmetric” it is meant that the

oscillators are all equivalent by symmetries of rotation and translation of the

geometric configuration.

The rule above assumes phases measured from a common axis for all the

oscillators. There is however another way to interpret the synchronization

of rotors on a ring. Such a configuration can be seen as a finite chain, but

with periodic boundary conditions. In the spirit of a one dimensional chain,

the phase of an oscillator should be measured from the direction of the chain,

in this case, the tangent to the circle at the position of the oscillator. The

“in-phase” state in Eq. (9.3), becomes, in the new phase coordinates (φ̃i)i, a
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9.2. Effect of the symmetry of the configuration on synchronization

metachronal wave with a wavelength of the size of the chain:

φ̃i+1(t)− φ̃i(t) ≈
2π

N
. (9.4)

However, since for N = 8, the distance between oscillators on opposite sides

of the ring is not negligible compared to d, it might be possible that the ring

cannot be approximated by a one dimensional chain with periodic boundary

conditions.

9.2.2 Phase-locked states in an asymmetric configura-

tion

Most configurations that can be imagined are asymmetric. This section

highlights the consequence of the asymmetry of the geometry on the

synchronized state.

Five identical rotors are placed in the configuration shown in Fig. 9.3. Note

that the orbits overlap. In Fig. 9.3(a), the rotors have an initial condition in

phase. When they start to be driven at a constant force, they do not move all

at the same speed, although the magnitude of the driving force is the same

for all the oscillators. The upper middle rotor (black track) goes faster than

the two lower rotors (yellow and green) that go themselves faster than the left

and right upper rotors (blue and red), see the snapshot for t = 1.81 s. It can

be concluded that the in-phase state is not a stable state of the system. Since

after a few cycles, the particles collide, it is not clear if the system could still

synchronize in another state or not.

It is however possible to modify the five rings configuration above, such that

it synchronizes (almost) in phase. This is shown in Fig. 9.3(b). Since the left

and right upper oscillators were progressing too slowly in (a), their driving

forces F1 have been increased in (b). The three other rotors are still driven

by a force F0. In Fig. 9.3(b), F1/F0 = 1.10. This results in a synchronized

system with all the oscillators phase-locked, and the three upper oscillators in

phase.
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9. SYNCHRONIZATION OF ASSEMBLIES OF ROTORS

Figure 9.3: Configuration of five overlapping rotors (a = 1.74 µm).
Snapshots of the beads are shown for different instants. The coloured
“comet tails” show a short history of the position of the beads before the
time of the snapshot. (a) The beads are driven by a constant force with
the same amplitude F0. Because of the asymmetry of the configuration,
the system does not synchronize in phase, leading to collisions between
the particles. The rotors start to move with an initial condition in phase.
(b) Increasing the driving forces of the left and right upper oscillators to
F1 = 1.10F0 leads to a synchronized system. Starting from an arbitrary
initial condition, the system converges to a locked state with all the upper
oscillators in phase and the lower oscillators having a slightly delayed phase
compared to the upper row.

162



9.2. Effect of the symmetry of the configuration on synchronization

Interestingly, the two lower oscillators manage to synchronize with the upper

middle bead, although they were not moving at the same speed in (a). This

can be linked to the single rower perturbed by a clock signal ticking at a

frequency different from the intrinsic period of the oscillator (Chapter 4).

In this chapter it was shown that, when the clock was detuned by a small

value, the colloidal rower could adjust its phase in order to adapt its period

so that it can stay synchronized with the clock. If the clock is detuned too

much, synchronization is lost. Here, although the oscillators are rotors, a

similar behaviour arises. When the same driving force is used for all the

rotors, the system is in fact already detuned, because of the asymmetry of the

configuration. For example, the upper middle oscillator is more coupled to

the four other beads, than the left and right upper oscillators are. In the case

of rotors, and for an initial condition close to in-phase, a rotor with higher

coupling will see its phase grow faster than the phase of the other oscillators.

Therefore, the detuning embedded in the configuration can be corrected by

adjusting the driving forces. The forces can be tuned to put the system in

a synchronized state, and even — with finely tuned forces — in phase. In

Fig. 9.3(b), the ratio F1/F0 was chosen such that the upper oscillators would

synchronize in phase. The lower oscillators are still detuned (lower coupling)

compared to the upper middle bead. This detuning is small enough so that the

five rotors are synchronized, but the lower beads are slightly delayed compared

to all the upper rotors [see the steady state in Fig. 9.3(b) for t = 1.31].

From the observations above, a second rule to determine the state of a given

configuration emerges. In asymmetric configurations, the stable state — if

any — corresponds to a state in which oscillators that are more coupled

(closer) to all the others will have a phase ahead of the phases of less coupled

oscillators.

The rule can be used to explain qualitatively the “chevron” state in Eq. (9.1)

observed numerically by Niedermayer and Lenz in the linear chain of rotors

with free ends. An oscillator i < N/2, is less coupled to the others than its

neighbour i+1, which is closer to the middle of the chain. Therefore, using the

rule above, φi+1(t)− φi(t) > 0. Similarly, it is found that φi+1(t)− φi(t) < 0

for i > N/2. This is consistent with Eq. (9.1).
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9.3 Waves in chains of rotors

The synchronization of a chain, sketched in Fig. 9.4, of N rotors equally spaced

along a line is studied in this section. According to the rule in Section 9.2.2

and the simulations in [88], it should be possible to observe a “chevron” state

if the rotors are driven with the same driving force. Furthermore, detuning

the rotors should change the synchronized state. With the rotors indexed

from 1 (left) to N (right), the driving force for the oscillator i is set to the

following value:

Fi = F0ρ
i−(N+1)/2 . (9.5)

With this expression, the driving forces of two neighbours are detuned by a

factor ρ, and for small detunings (ρ ≈ 1), the average force obtained by Taylor

expansion is 〈Fi〉i ≈ F0.

Figure 9.4: Chain configuration of N rotors.

Fig. 9.5 represents the evolution of the phases φi with time for different values

of the detuning ρ in a chain of N = 8 rotors. Various states can be obtained.

For high or low detuning (ρ = 0.96 and 1.04), the chain is not entirely

synchronized, as the intrinsic periods of beads 1 and 8 are too much different.

For a value of the detuning closer to unity, decreasing the detuning leads to

a transition from a wave propagating in the +êx (increasing bead indexes)

direction (ρ = 1.005, characterized by diagonal wave fronts in Fig. 9.5) to a

wave in the −êx direction. A very narrow region of ρ leads to an intermediate

state: for ρ = 1.0075, the chain spends some time in a wave state along +êx

(up to t = 42 s), moving then to a “chevron” state, in which the central

oscillators are ahead of the rotors on the sides. The “chevron” is not precisely

described by a formula of the form of Eq. (9.1), because of the small number

of oscillators.

ρ = 1.0075 represents the middle of the transition. It is not 1 in the
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Figure 9.5: Synchronization of a linear chain of eight rotors for different
values of the detuning ρ in the driving forces between neighbours. The
system is not entirely phase-locked for large detuning (ρ = 0.96 and 1.04).
Inbetween, the system shows a transition from a wave propagating along
+êx to a wave propagating along −êx (ρ = 1.005 and 1.01 repectively).
Parameters are η = 2 mPa·s, a = 1.74 µm, d = 7.0 µm, r0 = 1.6 µm,
F0 = 1.5 pN, kr ≈ 2.1 pN/µm and h = 75 µm.
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experiments because of a residual detuning existing for ρ = 1, although

extra care was taken to avoid this by calibrating the periods of the oscillators

individually just before realizing the chain.

When the system is mainly synchronized, a few defects occur in the locked

states. These are clearly visible for ρ = 1.0075, but also exist (and are more

probable) for ρ = 1.005 and 1.01. Interestingly, the defects seem to be created

at one of the sides of the chain and to always propagate in the direction

opposite to the wave (see Fig. 9.5 for ρ = 1.005 and 1.01).

The phases are recorded for 3 min, repeating the experiment for several values

of the detuning. The state of the system can be characterized in many ways

by averaged quantities. In Fig. 9.6, two variables are plotted against ρ. First,

the quantity

〈〈φi+1(t)− φi(t)〉t〉i (9.6)

gives the average relative phase difference between neighbours. Since it is

averaged in time, but also in bead indexes, its value is expected to be a

non-zero value for a wave with a clear direction of propagation and zero for

a “chevron” state. This quantity shows a sharp transition from a wave in

the −êx to the +êx direction. The saturation values at −0.7 and 0.6 rad can

be compared to the wavelength of a metachronal wave with a period of one

chain length: 2π/N = 0.79 rad per bead index. A careful look at the waves in

Fig. 9.5 shows that the wavefronts are not perfectly straight lines, indicating

that the wavelength depends slightly on the bead index. Such states were

observed in [88], but this might be due to an experimental issue as well.

The second variable used to characterize the state of the system in Fig. 9.6 is

〈stdt [φi+1(t)− φi(t)]〉i (9.7)

with stdt the standard deviation over time. This is a measure of the number of

defects propagating in the locked state, as a defect leads to temporary changes

of the phase difference between neighbours. Fig. 9.6 shows that defects are

more frequent far from the transition. Therefore, the loss of synchronization

at high detuning can be seen as defects perturbing the locked state so much

that it prevents seing synchronization of the whole chain.
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Figure 9.6: Mean phase difference between neighbours (blue)
and measure of their fluctuations in time (green), depending on the
pair-detuning ρ. The first quantity shows a sharp transition from a wave
propagating along the −êx to the +êx direction, with a wavelength close to
the size of the chain. The number of defects, measured by the second
quantity (green) increases when moving away from the middle of the
transition.

9.4 Conclusion on the phase-locking of N ro-

tors

Although increasing the number of rotors in a system can increase the

complexity of the collective behaviour of the oscillators, results on the

synchronization of two rotors (Chapter 8), and even ideas developed in the

study of the phase-locking of a rower to a clock (Chapter 4) could be reused.

In the few configurations investigated in this chapter, both phase-locked and

non-synchronized states were obtained. All the states could be explained in a

qualitative manner.

The general idea that emerges from the states obtained here is that, as for

two rotors, a system of N rotors seems to have a preference to synchronize in

phase. However, when all the oscillators in the geometry of the configuration

are not equivalent in terms of coupling relative to the others, this in-phase

state is perturbed: the oscillators that are highly coupled to the others tend
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to go faster than the less coupled oscillators. Similarly to the rower coupled

to a clock signal, this can lead to two behaviours. If the coupling effect does

not detune too much the oscillators relatively to each other, the system can

sychronize by adapting the phases of the oscillators, with the phase of the

highly coupled oscillators being ahead of the others. Too big coupling-induced

detunings, however, cannot be corrected by phase shifts and, in that case, the

whole system would not synchronize. Subparts of the system can still be phase

locked.

To exhibit the effect of the detuning induced by coupling, the driving forces

of some of the oscillators were changed. In a five-rotors configuration, it

was possible to synchronize in phase the highly asymmetric configuration by

adjusting the magnitude of the driving forces acting on the beads.

In a chain of oscillators, the state of the system could be controlled by the

force-detuning parameter ρ. Interestingly, the mean phase difference between

the oscillators does not evolve linearly with ρ, and displays instead a sharp

transition between two waves propagating in opposite directions, with an

average wavelength close to the size of the chain. Waves are seen in a wide

range of values of ρ and seem pretty stable. In the middle of the transition, a

“chevron” phase-locked state was observed, recovering findings in [88]. This

state could be explained qualitatively by using the ideas summarized above.

For small detunings (ρ ≈ 1), the chain is mainly phase-locked. However, some

defects seem to propagate in the direction opposite to the wave. In simulations

with no Brownian noise, defects still exist and seem to appear at regular time

intervals [190]. Hence the pattern of phase differences between the oscillators

might be periodic in time and not (but almost) phase-locked.

Only a few systems of several rotors have been studied in this chapter. To

confirm the rules determining the state of synchronization, they should be

tested on more configurations. The rules might not apply in the general case.

It is indeed likely that some configurations could lead to several stable states.

When more than two oscillators are present, wall interactions also change the

coupling to a local interaction (decaying with the distance in 1/r3 instead of

1/r), possibly affecting the way a big system synchronizes.
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Chapter 10

Conclusions and outlook

The interaction between cilia (or flagella) and the fluid that surrounds them

is complex to describe in detail. To focus on how several of these oscillators

couple and synchronize through the fluid, I have used coarse-grained models

of a cilium, by representing it as a hard sphere. This simplification brings

a lot of advantages, that are exploited in this thesis. Firstly, experiments

could be performed with optical tweezers driving colloidal particles. Secondly,

simulations were realized, without having to solve the Stokes equation

numerically: the hydrodynamic interaction is simply described by a tensor

relating the velocities of the particles to the driving forces, resulting in a

simple Langevin equation that includes thermal noise and can be integrated

step by step. Thirdly, the simplicity of the equations allowed to derive in

some cases theoretical models to explain the cooperative behaviour seen in

the experiments and simulations. These theoretical analyzes are important to

understand what are the parameters that control the synchronization.

Two main models have been considered: a one-dimensional free-phase

oscillator, called “rower”, in which a particle moves between two traps that

are switched on and off in turn, following a configuration-dependent rule, and

a “rotor” model, where the particle moves along a circular two-dimensional

trajectory.

With the first rower model, a single oscillator coupled to a periodic signal

has been used to study how thermal fluctuations can lead to a loss of
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synchronization, and the results were summarized on a phase diagram,

involving the ratio of a dimensionless parameter characteristic of the noise

amplitude and a parameter describing the amplitude of the coupling force.

For two coupled rowers, the state of synchronization depends on the curvature

of the driving forces from the optical tweezers. An in-phase to antiphase

transition in the synchronization was observed when varying the curvature.

Here, the effect of the thermal noise is to smooth the transition. The results

were used to explain the state of synchronization of the two flagella in the

alga C. reinhardtii. On configurations of more than two rowers, it has been

shown that the oscillations of the beads can be decomposed in a space of

equilibrium “normal modes”. By testing several arrangements of oscillators,

it appeared that, for harmonic driving, the system puts itself in a state in

which the mode that decays with the highest relaxation time dominates. This

could help designing configurations that require a given state of oscillations,

or seek for configurations leading to metachronal waves. Finally, the rower

model has also been modified to allow it to change its beating direction freely.

In numerical simulations, arrays of these modified rowers synchronize and

also align their oscillations, because of the hydrodynamic interaction. The

alignment of a rower occurs relatively to the direction of the others, but also,

when the array is not symmetric, in the direction of elongation of the array.

This could be applicable to Paramecium, since it is an elongated cell that

moves in the direction of its elongation.

The second model, rotors, has been implemented experimentally for the

first time. Two separate mechanisms for rotor synchronization had been

proposed by theoretical groups, and the experiments in this thesis recover

qualitatively their findings. A simple analytical argument has also been

used to join the two models together and a phase diagram showing which

mechanism is dominant has been obtained. The collective behaviour of more

than two rotors arranged along chains, rings and other configurations has

also been explored experimentally. Qualitative rules for determining the

possible phase-locked state were deduced. In linear chains of rotors, patterns

of propagating waves were observed when the rotors were driven by forces

with different magnitudes, i.e. rotors of varying frequency. This is one of

the first experimental observation of waves in coarse-grained models of cilia.
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Another experiment reporting propagating waves of phase patterns in active

colloidal systems uses ellipsoidal particles trapped with static optical tweezers

on a surface. Such particles, elongated like cilia, undergo oscillations [191]

and rings of these oscillators can synchronize in propagating waves [192].

The main conclusion drawn by this principally experimental work is that the

hydrodynamic interaction can lead to strong synchronization through various

mechanisms (choice of the driving force, shape of the orbit and flexibility

in the trajectories), even in the presence of thermal noise. Other coupling

channels have been proposed to explain the cooperative behaviour of cilia

and flagella: mechanical through the cell body and contact forces between

cilia. They might be relevant in particular cases. However, which of the

mechanisms are dominant is still an open question and the answer might

depend on the biological system. Also, a possible coupling between these

different mechanisms cannot be excluded. For example, this thesis does not

consider oscillators in a net flow. Adding the fact that cilia and flagella swim

or generate a net flow could change the way synchronization emerges.

The experimental work in this thesis, in which the oscillators were located

far from any surface, shows a very good agreement with previously published

theoretical models for the synchronization of rotors and rowers. This means

that the hydrodynamic interaction is well described by the Oseen tensor, and

that the equations of motion describing these coupled systems are accurate.

However, cilia are anchored on a surface. The presence of a static wall should

therefore be taken into account. Some theoretical and numerical work on

rowers and rotors has already considered the presence of a wall [88, 146], but

experiments are lacking. While a wall with no-slip boundary conditions is

not expected to change the mechanisms at play for the synchronization of

two oscillators far away (it only changes the value of the coupling constant

in the equations of motion), it might affect considerably the way chains and

arrays of oscillators synchronize. The presence of a wall changes indeed the

power of the decay of the interaction with distance, making the hydrodynamic

interaction more local.

Relating the findings in the synchronization of rowers and rotors to real

biological systems is crucial. This was done where possible throughout this
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work, for example on Chlamydomonas. The main issue is that, currently, only

few physical parameters have been extracted from living cilia and flagella.

To pursue a comparison with the coarse-grained models of oscillators, it will

be necessary to gain more quantitative knowledge on the shape of ciliary

oscillations in various systems and the stiffness of the filaments.

The colloidal oscillators developed here can be used to explore more realistic

models of cilia. For example, a possible viscoelasticity of the fluid could be

added, since it might enhance flow generation [193], and since mucus in the

airways is a non-Newtonian fluid. Viscoelasticity of the fluid could enhance

swimming. Also, the coarse-grained oscillators in this thesis are only a good

approximation to cilia or flagella spaced by a much higher distance than the

size of the filaments they represent. Real cilia on tissues can be densely

packed, and bacteria like E. coli have filaments that are much longer than

their separation. Understanding in more details the synchronization properties

in this case requires to model elongated filaments. For E. coli, such models

already exist and synchronize because of the flexibility at the base of the

relatively stiff helical filaments [17], hence obtaining a qualitatively similar

result as in the flexible rotors.

The rowers and rotors models that I have studied here in experiments,

simulations and by theoretical models have brought new knowledge in the field

of synchronization of micrometric oscillators that interact through a fluid in

a low Reynolds number environment. But the physics of hydrodynamically

coupled actively driven systems is very rich and many aspects — some being

mentioned in this conclusion — remain to be investigated.
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Appendix A

Fluctuations around the fixed

point in the perturbed single

rower

This appendix presents in more detail the calculation that leads to an estimate

of the fluctuations around the synchronized state in the system of a single

rower coupled to a “clock” signal (Chapter 4).

A.1 Cycle of oscillation

The oscillation represented in Fig. 4.1 is considered. The initial condition is

the position A/2, following a geometric switch. The time t1(i) between the

geometric switch and the previous clock switch, at cycle i, can be used to

measure synchronization. The aim is to estimate the distribution of t1(i+ 1)

after one cycle, and use it in a fixed-point argument for the noise.

A cycle corresponds to a sequence of four stages. During the first, the bead has

velocity −v(1 − ε) during a time t2(i) = Tc/2 − t1(i). Subsequently, between

the clock switch and the next geometric switch, the velocity is −v(1 + ε)

during a time t3(i). The third and fourth stages describe the other half of the

oscillation, with (positive) velocity v(1− ε) for a time Tc/2− t3(i) and v(1+ ε)
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for a time t1(i+ 1).

This calculation requires to evaluate how thermal noise affects the cycle in

two ways. First, in the time between a geometric switch and a clock switch,

the bead is subject to a driving force and diffusion, which makes the arrival

position rj(i) (where j ∈ {1, 2} indexes the half-cycle bead positions) at

the clock switch stochastic. Second, the evaluation of the time between the

position rj(i) and the position of the next geometric switch is a first-passage

time problem that contributes to the stochasticity of the times t3(i) and

t1(i+ 1).

A.2 Equation of evolution of time t1

To find the equation of evolution of t1, the different stages of the cycle need

to be detailed. As the delay t1(i) between the starting geometric switch and

the previous clock switch is known, the duration of the random walk between

the geometric switch and the next clock switch is prescribed, t2(i) = Tc/2 −
t1(i). The position of the particle at the clock switch is given by r1(i) =

v(1 − ε)t2(i) + x1(i). v(1 − ε)t2(i) is the deterministic arrival time and x1(i)

corresponds to the fluctuations due to the diffusion of the particle: 〈x1(i)〉 = 0

and 〈x2
1(i)〉 = 2Dt2(i) = 2D[Tc/2− t1(i)] with D the diffusion coefficient. In

order to carry out the argument, it is assumed that any transient behaviour is

past, and that t1(i) can be approximated by its average tfp1 in the expression

of the variance.

After the clock switch, the bead moves over a distance A′ = A − r1(i) at

an average velocity v′ = −v(1 + ε). The arrival time t3(i) of this process is

described by the first-passage time probability density P [t3(i)], where P is the

inverse Gaussian [181]:

P(t) =
1√

4πDt3
e−

(A′−v′t)2
4Dt . (A.1)

This probability density is well approximated by a Gaussian in the small

diffusion limit, i.e. when A′/v′ � A′ 2/(2D) (in this case the skewness of this
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A.2. Equation of evolution of time t1

distribution is small). Equivalently, this approximation holds for times t such

as v′t/A′ ∈
[
1−
√
ξ′, 1 +

√
ξ′
]

with ξ′ = 2D/(A′v′).

This condition is satisfied for ξ′ � 1, so that the first-passage time distribution

P is well-approximated by a Gaussian centred on [A− r1(i)]/[v(1 + ε)] and of

variance 2DA′/[v3(1 + ε)3]. Since A′ is itself a random variable, as above, A′

is replaced by its average value in the variance: 〈A′〉 = v(1 + ε)tfp1 . These two

assumptions lead to the following formula for the time t3(i):

t3(i) =
A− r1(i)

v(1 + ε)
+ ζ1(i) (A.2)

=
A/v − (1− ε)Tc/2

1 + ε
+ κt1 −

x1(i)

v(1 + ε)
+ ζ1(i) (A.3)

= h[t1(i)] , (A.4)

with 〈ζ1〉 = 0, 〈ζ2
1 〉 = 2D 〈t1〉 /[v2(1 + ε)2] and κ = (1− ε)/(1 + ε).

Eq. (A.4) describes only the first half of the cycle. The second half is

symmetric, with the only difference that the velocities become positive. The

time t1(i+ 1) is therefore obtained by iterating Eq. (A.4):

t1(i+ 1) = h{h[t1(i)]} (A.5)

= (1 + κ)
A/v − (1− ε)Tc/2

1 + ε
+ κ2t1(i) + χ(i) , (A.6)

with

χ(i) = κ

[
x1(i)

−v(1 + ε)
+ ζ1(i)

]
+

x2(i)

−v(1 + ε)
+ ζ2(i) . (A.7)

Here, x2(i) and ζ2(i) represent the fluctuations in the second half of the cycle

and are defined similarly as in the first half-cycle. In this approximation, since

all the random variables are assumed Gaussian, χ(i) also follows a Gaussian

distribution centred on 0 and with variance

var (χ) = (1 + κ2)

[
var (x1)

v2(1 + ε)2
+ var (ζ1)

]
(A.8)

= (1 + κ2)(V1 + V2) , (A.9)
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with 
V1 = 2D

Tc/2− 〈t1〉
v2(1 + ε)2

V2 = 2D
〈t1〉

v2(1 + ε)2

. (A.10)

Assuming now that the clock period is set to the natural particle period 2A/v,

the evolution equation over one full cycle becomes

t1(i+ 1) = (1 + κ)
Aε

v(1 + ε)
+ κ2t1(i) + χ(i) (A.11)

with

varχ = (1 + κ2)
DTc

v2(1 + ε)2
. (A.12)

Removing the noise term χ(i) in Eq. (A.11) gives the deterministic fixed point

tfp1 = A/(2v) = Tc/4. Since the noise only adds fluctuations around this fixed

point, only the deterministic the deviation q(i) = t1(i) − tfp1 is considered.

Expressed with q, Eq. (A.11) becomes

q(i+ 1) = κ2q(i) + χ(i) , (A.13)

or

δq = q(i+ 1)− q(i) = − 4qε

(1 + ε)2
+ χ(i) . (A.14)

Eq. (A.13) shows the contribution of the deterministic part, due to the system

geometry which makes q decay to 0 with the typical decay time of (1+ε)2/(4ε)

cycles, and the noise, which adds fluctuations.

The two following sections present two methods to carry out the argument

leading to the quantification of the fluctuations for q.

A.3 Solving using the continuous Langevin

equation

Chapter 4 contains an approximated solution [Eq. (4.13)] in which the main

equation is treated as a continuous Langevin equation, although it is discrete.
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This procedure requires to convert Eq. (A.14) into a continuous equation. One

way to perform this task rigorously is to reduce the size of the steps at each

iteration, hence looking for an equation of the form

q

(
i+

1

n

)
= αq(i) + δ(i) (A.15)

that would describe the system. n is an integer that allows to take the

continuum limit. α is a coefficient and δ(i) a Gaussian random variable. These

coefficients can be found by iterating Eq. (A.15) n times and identifying the

coefficients with Eq. (A.13). The procedure leads to the following evolution

equation

q

(
i+

1

n

)
− q(i) = −

(
1− κ

2
n

)
q(i) + δ(i) (A.16)

with

var (δ) =
1− κ 4

n

1− κ4
var (χ) . (A.17)

Eq. (A.16) is a continuous Langevin equation when n tends to infinity.

Therefore, the variance of q at long times is estimated by

var [q(∞)] = lim
n→∞

var (δ)

2(1− κ 2
n )

(A.18)

= lim
n→∞

1 + κ
2
n

2(1− κ4)
var (χ) (A.19)

=
var (χ)

1− κ4
(A.20)

=
DTc
4εv2

. (A.21)

This can be expressed in dimensionless parameters as the fluctuations of the

phase φ1,

var (φ1) = var

[
q(∞)

Tc

]
=

ξ

16ε
. (A.22)

When the clock period does not match the natural oscillation time of the

oscillator, but is longer or shorter, Tc = 2A/v + δ, the calculation follows

the same steps, starting from Eq. (A.11) and replacing the clock period with

Tc = 2A/v + δ, instead of 2A/v.
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A.4 Solving by iterating the equation for the

variance

In order to estimate the fluctuations of q, Eq. (A.13) can also be directly

iterated, starting from an initial condition q(0). After n+ 1 iterations

q(n+ 1) = κ2(n+1)q(0) +
n∑
i=0

κ2iχ(n− i) . (A.23)

Evaluating the fluctuations of q(∞) = limn→∞ q(n+ 1), one gets

q(∞) =
∞∑
i=0

κ2iχ(n− i) . (A.24)

This is a Gaussian random variable with variance

var [q(∞)] =
∞∑
i=0

κ4i var (χ) (A.25)

=
1

1− κ4
var (χ) (A.26)

=
DTc
4εv2

. (A.27)

This is the same result as Eq. (A.21).
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Appendix B

Calculation of the

phase-antiphase transition for

two rowers

B.1 Introduction

This appendix provides details of the calculation estimating the fluctuations of

the delay time t1 and the average value of the synchronization order parameter

Q, together with additional simulations performed with various functional

forms of the potential.

It is organized as follows. First, a derivation of the evolution equation for

the delay time t1 in absence of noise is given. Then the effect of noise on t1

is considered, allowing to derive estimates for (a) the distribution of Q and

(b) the average 〈Q〉. In Section B.3 simulations are presented that justify the

choice of the “curvature” parameter c as a control parameter for the transition

of synchronization states.
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B. CALCULATION OF THE TRANSITION FOR TWO ROWERS

B.2 Derivation of 〈Q〉

B.2.1 Evolution of t1 without noise, and synchronized

states

The calculation is based on the simplifying assumption that the potentials

are composed of two linear sections (two slopes). For one single bead, and

considering the origin of the positions x = 0 in the middle of the two

geometric switching conditions, this “two-slopes” potential [the purple lines

in Fig. 5.3(b)] can be characterized by the driving force

F (x) =

 σFb if σx >
A

2
− x0

σFe otherwise
. (B.1)

Here σ = ±1 is the state of the geometric switch, A the amplitude (see

Fig. 5.1), and x0 is a parameter that describes at what position the force will

switch between ±Fb and ±Fe. In other words, the bead is driven by a force

±Fb just after a geometric switch, until it moves a distance x0 far from the

switch position. Then the force becomes ±Fe, until the next geometric switch.

For two beads, the equation of motion (5.2), can be written (without noise)

as 
ẋ1 =

1

γ
F1(x1, t) + εẋ2

ẋ2 =
1

γ
F2(x2, t) + εẋ1

, (B.2)

where ε = 3a/(2d) quantifies the strength of the hydrodynamic coupling

coefficient between bead 1 and 2. Between geometric switches, or “slope

break” events1, the forces are constant and the system is solved immediately

(F1 = ±Fu and F2 = ±Fv with u, v ∈ {‘b’, ‘e’}). The velocities of the beads

1A “geometric switch” refers to a change of σ and a “slope break” refers to a change of
the absolute force from Fb to Fe (but not Fe to Fb, which occurs at a geometric switch).
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are 
ẋ1 =

1

γ(1− ε2)
(Fu + εFv)

ẋ2 =
1

γ(1− ε2)
(Fv + εFu)

. (B.3)

In order to advance, one needs to assume an order in which geometric switches

and slope breaks occur. Two general cases need to be considered. These are

sketched in Fig. B.1 and correspond to oscillations that are almost in phase or

almost in antiphase. In both cases, each half-cycle is split into four pieces, for

which the forces are constant and lead to velocities given by Eq. (B.3). The

half-cycle can be expressed as a linear system of eight equations describing

the position of each of the two beads in the four parts, depending on the times

t1 to t4, t′1 and the distances δ1 to δ4 (see notations in Fig. B.1). For the case

of configurations close to in-phase motion [Fig. B.1(a)], the linear system is

δ1 =
1

γ(1− ε2)
(Fb − εFe)t1

δ2 =
1

γ(1− ε2)
(Fb + εFb)t2

x0 − δ1 =
1

γ(1− ε2)
(Fb + εFb)t2

x0 − δ2 =
1

γ(1− ε2)
(Fb + εFe)t3

A− x0 − δ3 =
1

γ(1− ε2)
(Fe + εFb)t3

A− x0 − δ4 =
1

γ(1− ε2)
(Fe + εFe)t4

δ3 =
1

γ(1− ε2)
(Fe + εFe)t4

δ4 =
1

γ(1− ε2)
(Fe − εFb)t′1

. (B.4)

This set of equations can be solved to find a discrete evolution map for the

time delay t′1 after a half cycle, depending on t1:

t′1 = κP t1 (B.5)

with

κP =
Fe + εFb
Fe − εFb

Fb − εFe
Fb + εFe

. (B.6)
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t1 is a proxy for the phase difference between the two oscillators, and is zero

when they are synchronized. If the considered half-cycle is the kth, t1 = t
(k)
1

and t′1 = t
(k+1)
1 , giving the equation of evolution found in Chapter 5, which

predicts in-phase synchronization for κP < 1 with a characteristic relaxation

time 1/κP (in half-cycles). It is interesting to note that this equation does

not depend on the geometric parameter x0 that appears in the definition

of the potential. Only the driving forces near the geometric switches need

to be considered. However, the solution assumes that the oscillations are

described by a cycle as sketched in Fig. B.1(a), which makes the equations

invalid for large t1, or x0 close to 0 or to A. This approximation can explain

the discrepancy between theoretical estimate and simulations in Fig. 5.6. The

effect of the parameter x0 on the transition is discussed in Section B.3.1.

The corresponding map for t1 for the case of oscillations that are almost

in antiphase can be obtained from the previous result by noting that the

interaction of the second particle on the the first one is the same but with an

opposite sign. Therefore, κAP is the same as κP but with ε replaced by −ε:

κAP =
Fe − εFb
Fe + εFb

Fb + εFe
Fb − εFe

. (B.7)

While not formally necessary here, both the perturbations with respect to a

synchronized state and ε can be considered to be small parameters as already

done in [147] and Chapter 4. The above expressions for κP and κAP can then

be easily recast in the expressions given in Chapter 5 by expanding in ε to

first order.
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(a)

‒ A/2

A/2
P1

P2

P3

t1 t2 t3 t4

δ1
δ2

x0

δ3 δ4

x

t

t'1

(b)

‒ A/2

A/2

t1 t2 t3 t4

δ1
x0

δ3

δ4

x

t

t'1

δ2

Figure B.1: Schematics and parameters of a half-cycle dynamics in
the two-slope approximation. A generic potential is approximated by a
two-slopes linear potential, leading to piece-wise constant bead velocities.
The time t1 is estimated by considering two possible half-cycles: (a)
for oscillations close to in-phase motion and (b) for oscillations close to
antiphase. For simplicity, the slope breaks in the position of one bead
due to geometric switches or Fb → Fe switches of the other bead are not
displayed here, but are taken into account in the calculation. The simplicity
of the model allows to obtain the time t′1 depending on t1, even when noise
is added to the system.
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B.2.2 Effect of the noise on t1

Starting from an initial condition t1, the noise will affect t′1 by modifying the

arrival times of the beads at each geometric switch or slope break. As each

half-cycle is composed of four parts, this is in principle a complex, coupled

first-passage time (FPT) problem. In the analytical estimates of the effect of

noise, in order to make the problem tractable, the coupling between the two

beads is neglected, so that the two beads can be treated separately (the full

model is however solved numerically). Without coupling, the half-cycle of the

blue bead in Fig. B.1(a) is made of two parts. Starting from a position A/2

(point P1), the position decreases at a velocity −vb = −Fb/γ during a time

t1 + t2, until the bead reaches the point P3 (defined by its position A/2− x0),

where the velocity will become −ve = −Fe/γ. The position continues to

decrease for a time t3 + t4 until the end of the half-cycle (point P2, position

−A/2). The first part is a simple FPT problem and the distribution of the

arrival time t1 + t2 = t is given by the probability density [181]:

PFPT1(t) =
1√

4πDt3
e−

(x0−vbt)
2

4Dt . (B.8)

The second part is also described by a similar FPT distribution, except that

when starting after point P3, the bead can go backwards and spend some

time in a potential corresponding to the previous velocity −vb. This effect

is likely happening just after P3, during a time tc defined as vetc =
√

2Dtc

which represents the possibility that the noise pushes the bead back towards

the position A/2 − x0 despite the average tendency to move at velocity −ve.
The effect is negligible when tc � 〈t3 + t4〉, or equivalently 2D/ve � A− x0.

For a choice of x0 and c such that the quantity A − x0 is of the same order

of magnitude as A, and ve is of the same order of magnitude as v0 = F0/γ,

this condition is equivalent to ξ � 1 where ξ = 2D/(Av0) is a dimensionless

expression of the noise strength. In this case, the distribution of t3 + t4 = t is

well approximated by

PFPT2(t) =
1√

4πDt3
e−

(A−x0−vet)
2

4Dt . (B.9)
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When ξ � 1, the distributions PFPT1 and PFPT2 can also be approximated by

Gaussians. In this case, the random variable t1 + t2 + t3 + t4 is described by

a Gaussian distribution, of mean value x0/vb + (A− x0)/ve and variance

2D

(
x0

v3
b

+
A− x0

v3
e

)
. (B.10)

Fig. B.2 shows simulations comparing this approximated probability

distribution with models using power-law potentials as well as with direct

simulation of the two-slopes model. The effect of varying the value of x0 is

also discussed.

The difference of the arrival times of the two beads t1 can be written as

t′1 = κt1 + ζ , (B.11)

and at the general kth step:

t
(k+1)
1 = κt

(k)
1 + ζ(k) , (B.12)

with κ = κP or κAP depending on the sign of c and ζ(k) a Gaussian random

variable characterized by

〈ζ〉 = 0 (B.13)

and 〈
ζ2
〉

= 4D

(
x0

v3
b

+
A− x0

v3
e

)
. (B.14)

The extra factor 2 compared to Eq. (B.10) accounts for the summation of the

variances of each of the two beads.

ζ characterizes the fluctuations of t1 that need to be added at each half-cycle

of oscillation. The fluctuations of the steady state t
(∞)
1 are given by iterating

Eq. (B.12) as in Appendix A, leading to the following estimates for the first

two moments of the t
(∞)
1 random variable (assumed Gaussian):〈

t
(∞)
1

〉
= 0 (B.15)
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Figure B.2: First-passage time distributions for different values of the
parameter c: −0.42 (red), 0 (green) and 0.42 (blue). (a,b,c) For each c, three
distributions are compared, coming from a simulation with a power-law
potential (dashed line), a simulation of the corresponding two-slopes model
(+ markers) and the approximating Gaussian distribution Eq. (B.10) (solid
line). In the two-slopes model, Fb and Fe are chosen such as they match the
values of the force of the power law potential at the geometric switches and
x0 satisfies x0/vb = (A − x0)/ve. (d,e,f) shows a comparison of the FPT
from power law potentials (+) with two-slopes potentials (dashed lines) and
its theoretical distribution (plain lines) for which x0 is chosen such as the
deterministic period is the same in all the potentials. The distributions
in (d,e,f) fit very well. However, in order to keep the calculation of 〈Q〉
simple and reduce the number of parameters, we used the two-slopes model
displayed in (a,b,c). In this case, for highly negative values of c [worst case
in (a)], the average value of the FPT of the power law potentials differ from
the two-slopes model by 30 %. However, in the definition of 〈Q〉 in Eq. (5.5),
the relevant quantity to estimate is the ratio 〈|t1|〉 / 〈τ〉 ∝ std(t1)/ 〈t1〉.
Between simulations with power law potentials and with the two-slopes
model, this quantity differs only by 6 % in (a), 3 % in (b) and 15 % in (c).
Parameters: a = 1.735 µm, η = 2.21 mPa·s, T = 296 K, A = 3.12 µm,
L = 1 µm, α = 0.37 (red), 1 (green) and 1.63 (blue).
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and 〈(
t
(∞)
1

)2
〉

=
1

1− κ2

〈
ζ2
〉
. (B.16)

From here on, as an assumption, x0 is imposed so that the two-slope potential

satisfies the condition x0/vb = (A−x0)/ve. This means that, in the absence of

coupling, a bead would spend on average an equal time in the high-gradient

and low-gradient potential steps. A consequence is that the average period

of oscillation becomes 2A/v0 and does not depend on c. Note that the choice

of x0 is arbitrary, provided that it is chosen within a “reasonable” range.

Namely, that the “vb to ve” switch at x0 happens far away from the geometric

switches in order to satisfy first that the oscillations stay in a cycle described

either as (a) or (b) in Fig. B.1, and second that the approximation of t1 as a

Gaussian random variable is valid. This choice of x0 does not give the best

two-slope estimate (see Fig. B.2), but is convenient to keep the algebra simple

and obtain closed expressions.

It is also supposed that the coupling term ε is small, so that κ can be expanded

to the first order in ε. Including both assumptions in the noise on t
(∞)
1 leads

to the simplified expression:

ρ2 =

〈(
t
(∞)
1

)2
〉

=

(
A

v0

)2
1 + c2

1− c2

ξ

8 |c| ε
. (B.17)

The absolute value ensures that this formula is valid for both c > 0 and c < 0.

Fig. B.3 shows distributions of t1, corresponding to the simulations presented

in Chapter 5. The simulations agree very well with the approximated Gaussian

distribution obtained above.
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Figure B.3: Numerical distributions of the times t1 for different values
of c (0.42, 0.035, 0.0071, −0.0071, −0.035 and −0.42 from blue to orange).
Even for high values of |c|, the distributions are in very good agreement
with the analytical estimate (solid lines).

B.2.3 Probability distribution of Q

The probability distribution of the synchronization order parameter Q, given

in Fig. 5.5, is estimated, within the assumption that x0/vb = (A − x0)/ve.

From its definition in Chapter 5, the parameter Q can be expressed piece-wise

for negative and positive values of c as a function of |t1|:

Q(k) =


1− 2

|t1(k)|
τP (k)

if c < 0

−1 + 2
|t1(k)|
τAP (k)

if c > 0

. (B.18)

Here, τP (k) (or τAP if c > 0) is the duration of the half-cycle k. Its expression

at the first order in ε is

τP (k) = t1,P (k) + t2,P (k) + t3,P (k) + t4,P (k) (B.19)

= (1− ε)A
v0

+ 2ε

(
1 +

2c

1− c2

) ∣∣∣t(k)
1

∣∣∣ . (B.20)
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For positive “curvatures” c, τP (k) has to be replaced by τAP , for which ε is

changed to −ε. The in-phase and antiphase periods differ slightly, so the cycle

average 〈Q〉 is not identical to a time average, accounting for the offset of 〈Q〉k
at c = 0 in Fig. 5.5.

In order to obtain the distribution of Q, we need the probability distribution

of t′ =
∣∣∣t(∞)

1

∣∣∣. As t
(∞)
1 is supposed to follow a Gaussian random variable, t′

has the half-normal distribution

Pa(t) =

√
2

πρ2
exp

(
− t2

2ρ2

)
. (B.21)

The probability distribution of QP , PQP
(q), is then deduced from Eqs. (B.21)

and (B.18):

PQP
(q) =

∣∣∣∣ d

dq
Q−1
P (q)

∣∣∣∣Pa[Q−1
P (q)

]
, (B.22)

leading to

PQP
(q) = Pa

(
A

v0

1− q
B +K(1− q)

)
B

[B +K(1− q)]2
, (B.23)

where 
B =

2

1− ε
K =

−2ε

1− ε

(
1 +

2c

1− c2

) . (B.24)

PQAP
is obtained similarly and results in the same formula, but with ε replaced

by −ε in the expressions of the parameters B and K. PQP
and PQAP

are

represented in Fig. 5.5(d).

B.2.4 Order parameter 〈Q〉

As |t1| appears both in the numerator and denominator in Eq. (B.18), the

exact probability distribution of Q is hard to derive. To keep the calculation

simple, τP (k) is replaced by 〈τP 〉+ u(k) in Eq. (B.18) and the denominator is
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Taylor-expanded, leading, for c < 0, to:

Q(k) = 1− 2
|t1(k)|
〈τP 〉

(
1− u(k)

〈τP 〉
+

[
u(k)

〈τP 〉

]2

+ . . .

)
. (B.25)

When taking the average 〈Q〉, the first correction term is var [u(k)]/ 〈τP 〉2 ∼
var(t1)/ 〈τP 〉2. It is negligible when both ε � 1 and ξε/|c| � 1. At room

temperature and with our experimental parameters, ξ = 4.96 × 10−3 and

ε = 0.26, and the correcting term can be dropped for all curvatures except in

the tiny range |c| < 10−3. This simplification leads to the expression of 〈Q〉
plotted in Fig. 5.5(a):

〈Q〉 =


1− 2

〈|t1|〉
〈τP 〉

if c < 0

−1 + 2
〈|t1|〉
〈τAP 〉

if c > 0

(B.26)

=


1− α√

ε
[1− β

√
ε+ (β2 + 1) ε] if c < 0

−1 +
α√
ε

[1 + β
√
ε+ (β2 − 1) ε] if c > 0

(B.27)

where

α =

√
ξ

π|c|
1 + c2

1− c2
(B.28)

and

β =

(
1 +

2c

1− c2

)
α . (B.29)

Note that 〈Q〉 diverges when c tends to 0, since α tends towards ∞. In fact,

κ tends to 1 in that case, and the phase difference between the two particles

becomes free. The initial assumption that the cycle could be described by

Fig. B.1(a) for c < 0 and Fig. B.1(b) for c > 0 fails in that particular case.

This is however happening in a small range of c for moderate noise levels.
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B.3 Additional control simulations

B.3.1 Simulated two-slopes model

In the estimation of the effect of the noise on the P/AP transition, the

two-slopes model required the use of the parameter x0 which defines at what

position the potential switches from Fb to Fe. It is already shown that this

parameter does not affect the relaxation time 1/κ, at least at small levels

of noise. However, it does appear in the calculation of the half-period τ of

oscillations, and therefore 〈Q〉. Fig. B.4 displays simulations of the transition

by using two-slopes potentials for different values of x0. It appears that, except

for values of x0/A close to 0 or 1, the shape of the transition is always the

same. When x0/A approaches 0 or 1, the changes in the transition can be

explained as a failure to apply the approximation on the shape of the cycle:

the slope breaks occur so close to the geometric switches that the cycle cannot

be described as in Fig. B.1(a or b).
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Figure B.4: 〈Q〉 transition for several values of x0. x0/A is 0.1, 0.25, 0.4,
0.5, 0.5, 0.6, 0.75 and 0.9 from blue to red. As a comparison, the black line
is the transition from simulations obtained in Chapter 5 by using power
laws. All the curves fit to the same transition except for values of x0/A
close to 0 or 1.
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B.3.2 Power law potentials with different values of ς

The simulated two-slopes model shows that the information on the whole

shape of the potentials is not needed to describe the synchronized state. Only

the forces Fb and Fe, from which the parameters F0 and c are deduced,

are relevant to the problem. As a complementary empirical proof of this

assumption, we also performed simulations with power law potentials by

varying both the parameter α, controlling c, and ς, which provides a way to

change the whole shape of the potential [see Eq. (5.3)]. Fig. B.5 summarizes

the different transitions obtained. For each curve, ς is constant and α is varied

to change the “curvature” c. Again, all the curves fit remarkably well.
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Figure B.5: 〈Q〉 transition for power-law potentials with several values
of ς: A/ς is 0.94, 0.76, 0.61, 0.44 and 0.28 from blue to red. When ς
is changed, λ is also modified in order to keep the amplitude constant
between the different simulations. For each curve, c is changed through the
parameter α and kα is changed so that the average period of oscillations
remains the same. All curves lead to the same transition.
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Appendix C

Synchronization of the two

flagella in C. reinhardtii

C.1 Introduction

This appendix describes how data of the force generated by a single flagellum

of Chlamydomonas were used to match the model with experimental data

concerning the synchronization of two flagella, and represented by the dashed

line in Fig. 5.5(a) (inset). Data on the position of a flagellum and the force

exerted on it by the fluid during a cycle was kindly provided by Bayly and

coworkers, and is the result of experimental image analyzis from movies of an

uniflagellated Chlamydomonas cell [64].

The aim is to describe effectively the two flagella of a Chlamydomonas alga

as two rowers, for which the state of synchronization should be determined

by the curvature of the potentials, according to Chapter 5 and Appendix B.

An effective position of the flagellum and an effective driving potential need

to be determined from the experimental data. In general, any attempt to

reduce such a complex dynamics to a simple system is forcedly, at least to

some extent, arbitrary. In this case, one main choice is how to decompose the

beating motion into two one-dimensional oscillations.

When the flagella are synchronized, it is known that they beat most of the time
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C. SYNCHRONIZATION OF THE FLAGELLA IN C. REINHARDTII

in phase along the direction of propulsion and in antiphase along the transverse

direction [57]. Two configurations of rowers are therefore considered, which

define two axes used for the projection of the position and force as shown in

Fig. 5.7. From the effective potentials, the expected synchronized state of the

flagella (AP synchronization along the direction transverse to the swimming

direction, y) is recovered. As explained in this appendix, it is believed that

this axis leads to the main contribution to the synchronization. Section C.4

also presents direct simulations of the two rowers oscillating in the extracted

effective potentials that confirm this argument.

C.2 Computation of an effective potential

Fig. C.1 shows processed data of the position of the flagellum and its force

on the fluid. Reconstructing an effective potential acting on the flagellum

requires the knowledge of the driving force field; this can be obtained from

the data of position and driving force as a function of time. The position is

simply given by the centre of mass of the flagellum, which is represented by

the red line in Fig. C.1. For the driving force, the total force from the fluid

acting on the flagellum is calculated, taking its opposite as Ftot:

Ftot = −
∫ s0

0

f(s) ds , (C.1)

where f(s)ds is the force from the fluid acting on the small element of flagellum

of length ds, and s0 the total length of the flagellum. This definition of the

total force excludes the force from the body of the alga acting at the base of

the flagellum, and explains why Ftot is not exactly tangential to the orbit of

the centre on mass in Fig. C.1.

The second step necessary to obtain data that can be used for rowers is to

project the force along an axis. Synchronized states are described by a different

locked phase depending on the axis of projection. As discussed above, the x

(propulsion) and y (transverse) axes were chosen, as these are the well-defined

directions along which synchronized flagella can be said to be experimentally

in phase or in antiphase. By considering for example the x projection, two
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Figure C.1: Cycle of oscillation of a flagellum. In blue: flagellum at six
different instants on the cycle. The motion of the centre of mass of the
flagellum is represented by the red line. The opposite of the total force
Ftot from the fluid on the flagellum (black arrows) is closely tangent to
the motion of the centre of mass and is used to obtain the effective driving
potential acting on the flagellum. The red marker is the average position of
the centre of mass and is used to estimate the distance between the rowers.
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Figure C.2: Experimental effective potentials U ix, U iy (blue) and Udx and

Udy (red). The highest curvature is for Udy and is the main contribution to
the synchronization of the two flagella.

values of the force are obtained for a given x: one for increasing x positions

and one for decreasing positions:{
F i
x(x) = Ftot(x) · êx for increasing x

F d
x (x) = Ftot(x) · êx for decreasing x

. (C.2)

Therefore, two different potentials U i
x(x) and Ud

x(x) for the motion along the

x axis are obtained. The same analyzis can be carried along the y direction.

The effective potentials are represented in Fig. C.2.

C.3 Synchronized state

The highest curvature appears in Ud
y . Furthermore, the coupling coefficient

ε is 3a/(2d) in the configuration of rowers oscillating along y while it is only

3a/(4d) along x. Therefore, the model predicts that the main contribution to

the synchronization of the two flagella comes from the oscillations along the

y axis. Along this direction, Ud
y has a positive curvature while U i

y has a small,

negligible curvature. The model predicts synchronization in antiphase in this

direction, in agreement with experimental observations.
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C.4 Simulations of two rowers under effective

potentials

As a control, the effective potentials of the previous section were used as an

input to the Brownian dynamics simulations of two rowers. The distance

between the two rowers can be estimated by knowing (a) the average position

of one of the flagellum in the data of Fig. C.1 and (b) the distance between

the bases of the two flagella of a Chlamydomonas alga. This distance has been

estimated to 3 µm from the first snapshot of Fig. 2 in [82]. The (a) and (b)

contributions lead to an average distance of 11 µm between the two rowers

that model the flagella. The parameters in the simulations are d = 10 µm and

η = 1 mPa·s. The switching positions are set to the extremes of the range

of definition of the potentials in Fig. C.2. Beyond this range of positions

(i.e. overshooting the switch as can happen in the presence of noise), the

driving forces are set to the value of the nearest position where the potential

is defined in Fig. C.2. The radius of the spherical rowers has been chosen so

that the frequency of the simulated oscillations matches the experimental beat

frequency of the flagellum. The radius is found to be the same for oscillations

along x or y (a = 0.45 µm). This radius is in agreement with the resistive

coefficient CN in [64], the viscous friction coefficient 6πηa is equal (within

15 %) to the friction coefficient 4πηL/[ln(2q/r) + 0.5] with the notations and

numerical values from [64]. Fig. C.3 summarizes the results of the simulations,

and confirms the results given in Section C.4.
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Figure C.3: Synchronization of two rowers under the effective potentials
along the x (blue) and y (green). Oscillations are represented for three
different temperatures. The inset shows that at low temperature, the
system is synchronized in phase along x and in antiphase along y, in
agreement with experimental observations on Chlamydomonas. However,
the main graph shows that for middle range temperatures (including room
temperature), synchronization is stronger along the y direction.
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C.5 Where is C. reinhardtii on the

noise/curvature phase diagram?

The position of Chlamydomonas in the phase diagram in Fig. 5.5(a) can now

be estimated. The phase diagram is drawn for oscillations that are symmetric

for decreasing and increasing positions. In the case of Chlamydomonas, for

the data projected along y, only one of the two potentials is curved. During

a cycle of oscillation, only one half of it will contribute to synchronization.

However, thermal fluctuations are still present in both halves of the cycle.

Therefore, in the non-symmetric system, the noise parameter ξ is estimated

by

ξ = 2kBT/(AF
′) , (C.3)

where F ′ = γA/T0, with T0 the period of oscillation, which leads

approximately to a factor two compared to the definition in Chapter 5. This

definition avoids using Fb and Fe (through F0) that are not the same for

increasing and decreasing positions in the non-symmetric system. By this

mean, ξ is estimated to 1× 10−3 for the Chlamydomonas data.

The curvature c is harder to estimate, since the projection of the force

along the orbit naturally gives forces that approach 0 rather smoothly at the

assumed geometric switches1. In an attempt to obtain a value, the oscillation

of a single rower was fitted at 0 K in the Ud
i potential with two slopes, with

the slope break at a position such as x0/vb = (A− x0)/ve with the notations

of Section B.2.2. This leads to the estimate c ≈ 0.75.

1Exactly null forces would be found at the switches if the force field was exactly tangential
to the orbit.
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Appendix D

Investigation of the discrepancy

in strength of synchronization

between the two-rotors

experiments and simulations

This appendix describes in detail the different checks done on the data

in the synchronization experiment of two rotors (Chapter 8), and provides

possible explanations of the lower strength of synchronization observed in the

experiments.

D.1 Calibration of the force profile

The first rotors experiments were using force profiles created by setting the

separation between the bead and the trap ε proportional to the desired force

profile F (φ). The trapping force along the direction of driving is however

slightly anharmonic. Hence, calibrated force profiles were used as described

in Section 8.2, resulting in refined profiles shown in Fig. 8.2 that are very close

to the expected sinusoidal profiles.

205



D. DISCREPANCY IN STRENGTHS IN THE TWO-ROTORS SYSTEM

D.2 Measure of the radial stiffness

D.2.1 Trapping in the radial direction

In the radial direction, the driving trap of a rotor is made of a line of 21

harmonic traps (with same intensity) that are scanned at 20 kHz. In the case

of two rotors, the 21 traps of the first rotor are scanned, then the 21 traps of

the other, etc. The separation between two traps is set between 0 and 0.2 µm

in order to tune the radial trapping constant kr. The size of the line segment

is therefore varied between 0 and 4.4 µm. The trapping in the radial direction

is not strictly harmonic over a wide range, but can be approximated by a

harmonic trap for small fluctuations of the radius (see Section D.2.2).

D.2.2 Measure of the radial stiffness

The radial stiffness is measured for 50 different angles φ on a single-rotor

movie. For each angle, it is defined as

kr(φ) =
kBT

var [r(φ)]
, (D.1)

with var [r(φ)] the variance of the radius for the given angle φ. The radial

stiffness inputted in the theoretical formula is the average of kr(φ) over all

angles. The radial stiffness cannot be measured by taking the standard

deviation of the radial fluctuations at all angles, because the radius of the

trajectory is not perfectly constant (about 0.2 µm standard deviation, which

is bigger than the standard deviation due to thermal fluctuations).

Fig. D.1 shows distributions of r for four different angles. First, all these

distributions look like Gaussians, so that the trap can be described by a

harmonic potential in the range of thermal fluctuations. Second, although

the average value varies with the angle, the standard deviation remains fairly

constant, at least for small A2. This is also shown for more angles in the plot

of kr(φ) (Fig. D.2).
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kr is measured by looking at the thermal fluctuations along the radial

direction. The displacements are of the order of

δrtherm ∼
√
kBT

kr
. (D.2)

However, in the 2-rotors experiment, the fluctuations of the radial position of

a particle due to the interaction with the other particle has a magnitude

δrcoupl ∼ a

d
× 6πηav

kr
, (D.3)

where v is the typical tangential velocity of the oscillators. With usual values

of the parameters, δrtherm ∼ 0.04 µm and δrcoupl ∼ 0.1 µm. Therefore, thermal

fluctuations do not probe a range of positions wide enough to claim that

the potential is harmonic. However, measures of the anharmonicity of the

potential of a single trap far from the centre showed that at a distance of 1 µm

from the centre, the measured trapping force only differs by 30 % compared

to the value calculated by using the trap constant kr measured from thermal

fluctuations. Therefore, it is likely to be correct to approximate the radial

potential as harmonic in the relevant range δrcoupl of fluctuations of the radial

position.
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Figure D.1: Distribution of the radial position of a single rotor for
four different angles φ: 0 (blue), π/2 (cyan), π (yellow) and 3π/2 (red).
The Gaussian fits (lines) match the experimental data (+) very well. The
fitting parameters give values of kr in agreement with the method used
in Chapter 8, in which the standard deviation of the radius was simply
measured.
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Figure D.2: Radial stiffness, measured as a function of the angle for a
single rotor for different values of A2. A2 is changed as indicated in Fig. 8.2.
For small A2, the radial stiffness is fairly flat.
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D.3 Detuning between the two oscillators

Since the coupling between the two rotors is quite small [3a/(4d) < 0.1, see

Section D.8], the system is not strongly synchronized and the relaxation time

is highly sensitive to a detuning in the intrinsic periods of each oscillator. The

system is corrected for possible detunings by slightly increasing or decreasing

the average (over all angles) of the bead-to-trap distance ε of one of the

oscillators. Since the synchronized state is expected to be in-phase, the

detuning is adjusted such that the mean phase difference 〈∆φ〉 between the

two rotors is close to 0. Experimentally, the system was considered as not

detuned when 〈∆φ〉 was in the [−0.1, 0.1] rad range.

Figures D.3 and D.4 show an experiment and the corresponding simulation,

realized in Cambridge, in which detuning was deliberately introduced.

To remain synchronized in presence of detuning, the system adjusts its phase

difference (Fig. D.3), similarly to the experiment of a rower in an oscillating

coupling signal (Chapter 4). A mean phase difference of 0 should correspond

to no detuning. The mean phase difference appears to move in a wider range

in the experiments than in the simulations, for a given range of detuning.

Fig. D.4 shows that the detuning has a strong effect on the relaxation time.

The experimental and simulated (Cambridge) curves have a similar shape, but

experiments are shifted towards a higher relaxation time. But there is also

the possibility that the detuning is fluctuating over the duration (10 min) of

an experiment. While the mean phase difference can still be set to zero, it

only makes the average detuning equal to zero. Fluctuations of the detuning

lead to less synchronization, and simulations in Fig. D.4 suggest that it can

account for a big part of the discrepancy.
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Figure D.3: Experiment (a) and simulation (b): Mean phase difference
between the two oscillators depending on the detuning. In the experiments,
detuning is controlled by changing the bead-to-trap distance ε2 of the
second oscillator, while in the simulation, the tangential trap stiffness kφ,2
is changed. In the experiments, the system is not detuned (in average)
when ε2/ε1 is about 1.14.
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Figure D.4: Experiment (a) and simulation (b): Relaxation time
depending on the detuning as explained in Fig. D.3. One experimental
point seems to be anomalous. Note that the range of detuning explored
in the experiments is smaller than the one in the simulations. In the
simulations, the sharp decrease in τ at extreme detuning corresponds to
a loss of synchronization. The expected relaxation time in the absence of
detuning is about 3 cycles.
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D.4 Feedback time: sampling and delay

In the setup, the computer analyzes frames at a rate of 229 frames per second

(fps), and updates the position of the traps lines at the same frequency. The

feedback loop involves the time corresponding to this sampling frequency, but

also any delay in the transmission of the images to the computer, and from

the computer to the laser beam steering electronics (see Section 3.2.6). The

total delay between the time at which a picture of the beads is taken and the

time at which the traps are moved is 6.5 ± 0.1 ms (measurement on a single

1 min long movie).

This overall feedback time has an effect on the synchronization strength. The

main time interval (i.e. the largest delay) occurs when the computer decides

to move a trap: a command is sent to the AODs, but this is carried through

the USB port which can have a latency time of up to 10 ms (see Fig. 3.4). It

is under control of the operating system, and is difficult to reduce even in the

Linux system patched for real-time operation. Once the command has been

transmitted, the traps are moved essentially instantaneously by the electronics

controlling the AODs.

The effect of the sampling time (corresponding to the feedback frequency) is

explored first. The experiment in Fig. D.5 shows that increasing the sampling

frequency from 200 fps to higher values does not change significantly the

strength of synchronization. Simulations also supports this conclusion.

In a second set of simulations, the sampling is chosen extremely fast, but

included a delay in the motion of the traps. This delay appears to have a

large effect on the strength of synchronization (Figures D.6 and D.7). Even

small delays of about 1/100 of a cycle increase dramatically the relaxation

time, and moves it towards the experimental points. However, a delay of the

order of the one measured in the experiments (∼ 6.5 ms) is not sufficient to

explain by itself the shift between experimental and simulated curves.
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Figure D.5: Strength of synchronization depending on the sampling
(feedback) frequency. Experiments in blue and simulations (Cambridge) in
green. From this analyzis, looking at both experiments and simulations, it
was concluded that a sampling frequency greater than 200 fps was adequate.
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Figure D.6: Strength of synchronization in experiments and simulations.
The parameter kr is varied for several values of A2: 0, 0.4 and 0.7 (from
top to bottom). Markers are experimental points and the solid lines are
simulations with a delay of 5, 10, 15 and 20 ms (from blue to cyan).
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Figure D.7: Strength of synchronization in experiments and simulations.
The parameter A2 is varied for several values of kr: 0.762, 1.814 and
4.480 pN/µm (from top to bottom). Markers are experimental points and
the solid lines are simulations with a delay of 5, 10, 15 and 20 ms (from
blue to cyan).
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D.5 Freedom along rotational axes

In the simulations and theory, the model for hydrodynamic interactions

assumes point-like particles and a coupling described by a 2d Oseen tensor

in the (x, y) plane. In the experiments, it might be possible that the

particles rotate. However, if it is assumed that the tweezers are only applying

translational forces, this does not induce any rotation of the particles up to

O
[
(a/d)6] [19].

D.6 Relaxation time of the trap along the ra-

dial direction

There is a relaxation time 6πηa/kr linked to the radial stiffness. If this

relaxation time is longer or of the same magnitude as the period of oscillation

of a rotor, it could play a role in the state of synchronization. By using usual

values for all the parameters, a “radial” relaxation time of 0.04 cycles is found,

well below the period of the oscillators.

D.7 Viscosity and local heating

The laser beam of the tweezers delivers a few hundreds of milliwatts after the

objective. When entering the sample, the beam heats the fluid. This can

create convection and affect the local viscosity.

Viscosity is chosen by preparing water/glycerol solutions. Solutions of 49.6 %

in mass glycerol are made, which corresponds to an expected viscosity of

6 mPa·s at 25 ◦C. The viscosity is measured by looking at the autocorrelation

of the position of a particle in a static harmonic trap and η = 5.5 mPa·s was

found (average over x and y and over several trapping constants; points are

spread with a ∼ 0.3 mPa·s standard deviation).

The measured value is slightly lower than the expected value. This could be
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due to heating of the fluid from the laser beam (about 5 ◦C, measured using

the ratio of two fluorescent dyes), or to the uncertainty in the beads’ radii

(10 % according to manufacturer).

D.8 Wall interaction

The sample is made of a (very) dilute colloids solution sealed between a

microscope slide and a cover slip (see Section 3.2.1). The film of fluid between

the slides is about 150 µm thick. The two rotors are created at a height of

50 µm from the coverslip. Wall effects are not included in the simulations and

the theory used in this thesis, and they could explain the difference observed

in the experiments.

The hydrodynamic coupling term is estimated by calculating the x, x and y, y

components of the mobility matrix by using different tensors. Coupling is

defined by

cα,β =
µα,β1,1

µα,β1,2

(D.4)

with α, β ∈ {‘x’, ‘y’}.

To estimate the coupling in the presence of the wall, the Blake tensor corrected

for finite-sized particles is used (see Section 1.8, and more particularly 1.8.2).

In the geometry here, the coupling depends on the distance between the beads

d, the distance h between the oscillators and the wall, and the size of the

particles a. This geometry reduces the components of the Blake mobility

matrix to:

µx,x1,2 =
1

12πηd3r̄9

[
− 4a4d3

(
d4 − 27d2h2 + 16h4

)
− 3d3r̄4

(
d4 + 4h2d2 + 12h4

)
+ 3d2r̄5

(
d4 + 8h2d2 + 16h4

)
− 2a2d3r̄2

(
−d4 + 22d2h2 − 16h2

)
− 8a2r̄3h2

(
3d4 + 12d2h2 + 16h4

) ]
, (D.5)

216



D.9. Asymmetries in the setup

µy,y1,2 =
1

24πηd3r̄7

[
3r̄4d2

(
−d3 − 6dh2 + r̄3

)
+ 2a2r̄2

(
−d5 + 8d3h2 + d4r̄ + 8d2h2r̄ + 16h4r̄

)
+ 2a4d3

(
d2 − 16h2

) ]
(D.6)

and

µx,x1,1 = µy,y1,1 =
1

6πηa

[
1− 9

16

a

h
+

1

8

(a
h

)3

− 1

16

(a
h

)5
]
, (D.7)

where

r̄ =
√
d2 + (2h)2 . (D.8)

The couplings from the Oseen and Blake tensors were plotted with the

parameters of the rotors experiment in Fig. 1.3 in Chapter 1 for various

heights. At h = 50 µm, the wall reduces the coupling by 15 % in the x, x

direction and 30 % in the y, y direction, hence increasing the relaxation time.

D.9 Asymmetries in the setup

The experimental setup might introduce some asymmetries not included in the

simulations. Especially, aberrations of the laser beam and calibration of the

centre of a trap relative to the video image distort the expected force profile.

Therefore, the force profile (see Section D.1) is calibrated from experimental

data. However, other variables could suffer from asymmetries and change the

strength of synchronization.

Fig. D.8 shows experiments with the same parameters, except that the

orientation of the rotors relative to the rest of the setup is varied. The angle

of the line between the centres of the two oscillators is changed between 0

and 90◦. The force profiles and the radial stiffness (not shown here) remain

constants and the relaxation time fluctuates slightly, but is still much higher

than expected for all angles.
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Figure D.8: Relaxation time of the phase difference in a two rotors
experiments. Experiments in blue, theory in green. The orientation of
the system is varied by changing the angle between 0 and 90◦. It can be
interesting to appreciate how optical trap potentials are not “perfectly”
rotationally symmetric, but nothing here indicates that this imperfection
has any relation to the weaker than expected synchronization.

D.10 Conclusion on the discrepancy in

strengths of synchronization

From all these checks, it emerges that several points can lead to significantly

longer relaxation times in the experiments. The three most significant are:

• The experimental delay between the decision to move a trap and the

actual change of the trap position,

• The wall interactions that tend to reduce the hydrodynamic coupling,

• The experimental detuning between the intrinsic periods of the two

oscillators.

Each of these three are possible reasons behind the increase of the relaxation

time in experiments compared to theory; each one is estimated to account for

a factor smaller, but of the order of, the discrepancy that is observed. It is
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therefore very likely that a combination of these factors is present, leading

to the overall weaker synchronization in the experiments compared to the

simulations and theory. Fitting the experiments with numerical simulations

would require to include several new parameters in the system, with some of

them not being known with good accuracy in the experiments. Therefore, I

did not attempt to fit data with simulations including corrections.
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[137] A. Vilfan and F. Jülicher, “Hydrodynamic Flow Patterns and

Synchronization of Beating Cilia”, Phys. Rev. Lett., vol. 96, p. 058102,

2006.

[138] P. Lenz and A. Ryskin, “Collective effects in ciliar arrays”, Phys. Biol.,

vol. 3, pp. 285–294, 2006.

[139] A. Najafi and R. Golestanian, “Simple swimmer at low Reynolds

number: Three linked spheres”, Phys. Rev. E, vol. 69, p. 062901, 2004.

[140] A. Najafi and R. Golestanian, “Coherent hydrodynamic coupling for

stochastic swimmers”, Europhys. Lett., vol. 90, p. 68003, 2010.

[141] N. Uchida and R. Golestanian, “Synchronization and Collective

Dynamics in a Carpet of Microfluidic Rotors”, Phys. Rev. Lett., vol.

104, p. 178103, 2010.

233



BIBLIOGRAPHY

[142] N. Uchida and R. Golestanian, “Generic Conditions for Hydrodynamic

Synchronization”, Phys. Rev. Lett., vol. 106, p. 058104, 2011.

[143] N. Uchida and R. Golestanian, “Hydrodynamic synchronization between

objects with cyclic rigid trajectories”, Eur. Phys. J. E, vol. 35, p. 135,

2012.

[144] R. R. Bennett and R. Golestanian, “Emergent Run-and-Tumble

Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise”,

Phys. Rev. Lett., vol. 110, p. 148102, 2013.

[145] R. R. Bennett and R. Golestanian, “Phase Dependent Forcing and

Synchronization in the three-sphere model of Chlamydomonas”, Arxiv,

2013.

[146] C. Wollin and H. Stark, “Metachronal waves in a chain of rowers with

hydrodynamic interactions”, Eur. Phys. J. E, vol. 34, p. 42, 2011.

[147] J. Kotar, M. Leoni, B. Bassetti, M. Cosentino Lagomarsino, and

P. Cicuta, “Hydrodynamic synchronization of colloidal oscillators”,

Proc. Natl. Acad. Sci. USA, vol. 107, pp. 7669–7673, 2010.

[148] M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, and M. C. Lagomarsino,

“A basic swimmer at low Reynolds number”, Soft Matter, vol. 5, pp.

472–476, 2009.

[149] M. Leoni, B. Bassetti, J. Kotar, P. Cicuta, and

M. Cosentino Lagomarsino, “Minimal two-sphere model of the

generation of fluid flow at low Reynolds numbers”, Phys. Rev. E,

vol. 81, p. 036304, 2010.

[150] M. Leoni and T. B. Liverpool, “Hydrodynamic synchronization of

nonlinear oscillators at low Reynolds number”, Phys. Rev. E, vol. 85,

p. 040901, 2012.

[151] M. Leoni, “A geometric approach to the synchronization of a pair of

two-state switching rowers interacting hydrodynamically”, Nonlinearity,

vol. 25, p. 2953, 2012.

234



BIBLIOGRAPHY

[152] M. Cosentino Lagomarsino, B. Bassetti, and P. Jona, “Rowers coupled

hydrodynamically. Modeling possible mechanisms for the cooperation of

cilia”, Eur. Phys. J. B, vol. 26, pp. 81–88, 2002.

[153] M. Cosentino Lagomarsino, P. Jona, and B. Bassetti, “Metachronal

waves for deterministic switching two-state oscillators with

hydrodynamic interaction”, Phys. Rev. E, vol. 68, p. 021908,

2003.

[154] G. M. Cicuta, E. Onofri, M. C. Lagomarsino, and P. Cicuta, “Patterns of

synchronization in the hydrodynamic coupling of active colloids”, Phys.

Rev. E, vol. 85, p. 016203, 2012.

[155] L. Damet, G. M. Cicuta, J. Kotar, M. C. Lagomarsino, and P. Cicuta,

“Hydrodynamically synchronized states in active colloidal arrays”, Soft

Matter, vol. 8, pp. 8672–8678, 2012.

[156] R. Lhermerout, N. Bruot, G. M. Cicuta, J. Kotar, and P. Cicuta,

“Collective synchronization states in arrays of driven colloidal

oscillators”, New J. Phys., vol. 14, p. 105023, 2012.

[157] N. Bruot, L. Damet, J. Kotar, P. Cicuta, and

M. Cosentino Lagomarsino, “Noise and Synchronization of a Single

Active Colloid”, Phys. Rev. Lett., vol. 107, p. 094101, 2011.

[158] N. Bruot, J. Kotar, F. de Lillo, M. Cosentino Lagomarsino, and

P. Cicuta, “Driving Potential and Noise Level Determine the

Synchronization State of Hydrodynamically Coupled Oscillators”, Phys.

Rev. Lett., vol. 109, p. 164103, 2012.

[159] N. Bruot and P. Cicuta, “Emergence of polar order and cooperativity

in hydrodynamically coupled model cilia”, J. R. Soc. Interface, vol. 10,

2013.

[160] M. P. Curtis and E. A. Gaffney, “Three-sphere swimmer in a nonlinear

viscoelastic medium”, Phys. Rev. E, vol. 87, p. 043006, 2013.

[161] N. Koumakis and R. Di Leonardo, “Stochastic Hydrodynamic

Synchronization in Rotating Energy Landscapes”, Phys. Rev. Lett., vol.

110, p. 174103, 2013.

235



BIBLIOGRAPHY

[162] V. Lobaskin, D. Lobaskin, and I. M. Kulić, “Brownian dynamics of a
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