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The chimera state is the incongruous situation where coherent and incoherent populations coexist

in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydro-

dynamic forces at low Reynolds number, previously studied as a simple model of motile cilia sup-

porting waves, we find concurrent incoherent and synchronised subsets in small arrays. The

chimeras seen in simulation display a “breathing” aspect, reminiscent of uniformly interacting

phase oscillators. In contrast to other systems where chimera has been observed, this system has a

well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of

the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposi-

tion of eigenstates, whilst considering the mean interaction strength within and across subsystems

allows us to make a connection to more generic (and abstract) chimeras in populations of

Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental

observations of oscillators coupled through hydrodynamic forces. Published by AIP Publishing.
https://doi.org/10.1063/1.4989466

A group of oscillators can form two distinct subsets—one

synchronised and the other asynchronous. This state with

incoherent and coherent subsets is called a chimera state

and even forms when the oscillators are identical.1 It is

usually recognised by a subgroup developing disparate

frequencies and losing synchrony. This unique state has

been attributed to a variety of phenomena, including uni-

hemispheric sleep cycles in birds and lizards as well as

consensus in social groups.
2,3

We focus on oscillators cou-

pled through hydrodynamic force, which is a common

mechanism by which various biological systems coordi-

nate, including motile cilia.4 Cilia are hair-like growths

of a cell, the structure of which is highly conserved across

species. The coordination of motile cilia is responsible for

symmetry breaking during foetal development, as well as

fluid transport in the brain and lungs.
4–6

We find chimera

states in simulations of small arrays of driven non-linear

oscillators, which were based on motile cilia. These states

are surprisingly robust, and we interpret them in terms

of each subset mean interaction and by considering sym-

metries of the underlying interaction tensor. We expect

this robustness to translate to experimental observations

of the chimera state in oscillators with hydrodynamic

coupling. Furthermore, the chimera state may play a

part in understanding collective dynamics of motile cilia.

INTRODUCTION

Synchronisation is a general phenomenon in nonlinear

dynamical systems and is connected to a breadth of applica-

tions.7 The coordination between oscillators is an important

paradigm for modelling systems across biology, physics, and

chemistry: the flashing of fireflies, pendulum clocks, and the

Belousov-Zhabotinsky (BZ) reaction being common exam-

ples in these disciplines.8

A “chimera state” is a state with simultaneous incoher-

ent and coherent subsets, and is receiving increasing amounts

of interest. It has been observed in phase, amplitude, and

chaotic oscillators, using a variety of different models

including Ginzburg-Landau, Kuramoto, Lorenz, Stuart-

Landau, and FitzHugh-Nagumo oscillators.9–13 The types of

coupling leading to the formation of these states include uni-

form, nonlocal, and time-delayed interactions.10,14,15 Though

once thought to be a theoretical anomaly, it has now been

observed experimentally.16–18 The systems involved vary in

terms of scale and oscillator type, with optical, chemical,

and mechanical oscillators all exhibiting the chimera.12,16–22

The state is being related to a range of natural phenom-

ena.1,2,23–25 It has been linked to many biological systems

that involve complex and often competing interactions, from

internal processes such as epilepsy and heart fibrillation to

ecological predator and prey systems.1,26–30

Hydrodynamic interactions are common in biology and

the fundamentals are well understood. An example involving

these forces is motile cilia, which are highly conserved

microscopic hair-like growths of cells, that push fluid and

interact through hydrodynamic forces. Their oscillations are

responsible for the transport of fluid in the brain, lungs, and

reproductive systems of most mammals.4,6,31

We have worked on models of motile cilia with mini-

mal, geometrically updated traps, where each oscillator, or

rower, is a sphere driven in a low Reynolds regime, i.e., an

over-damped system.32–34 The model is designed to capture

generic features of non-uniform oscillators interacting via a

fluid, and arrays of oscillators can be simulated numerically.

a)https://www.bruot.org/hp/
b)http://people.bss.phy.cam.ac.uk/�pc245/
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Chimera-like features have been noted in another minimal

model inspired by ciliated tissue, where the oscillators were

heterogeneous.5 In this work, we control the emergence of

subsets by varying array geometries, changing the layout of

identical rowers. Our numerical simulations show that for an

appropriate interaction range and rower spacing, synchron-

ised and incoherent populations coexist. For long range inter-

action, rowers all oscillate in-phase together, but when the

range is restricted, phase-locked states are observed. We find

that in an intermediate range, chimera states develop with

the synchronised population’s geometry depending on the

system layout. The different states are considered in the con-

text of the Oseen eigenmodes, which are derived from the

fundamental interaction between rowers.35,36 We see the chi-

mera state is a combination of different modes and can pre-

dict its emergence by considering appropriate combinations

of the normal mode relaxation rates. Alternatively, the chi-

mera states can be interpreted using the mean interaction of

each subset, emphasising the parallels with the behaviour of

systems involving uniformly coupled Kuramoto phase

oscillators.14,37

THE ROWER MODEL

Forces acting on a rower

Simple models to understand coordination of motile

cilia have been proposed in the last decade and are reviewed

in Ref. 4. In the rower model, a bead oscillates along x,

driven by geometrically updated potential traps. We consider

here the case where the driving potential is a simple power

law k x1=2
r , where xr is the distance relative to the vertex of

the side parabola. At the vertex, xr¼ 0, the gradient of the

potential diverges [see Fig. 1(a)]. To create oscillations, the

trap is updated once the bead is at a distance d from the ver-

tex. The new potential is a reflection of previous along the

central axis xr ¼ A=2þ d; the red and blue curves in Fig.

1(a) illustrate this. The update point d prevents xr¼ 0, where

the force would diverge. The exponent of the power law was

chosen to guarantee in-phase synchronisation between pairs

of rowers and follows directly from the implementation in

Ref. 38. The y position of the rowers is maintained by a har-

monic trap, which depending on the row has a minimum at 0

or dR. These traps restrict the rower oscillations to one-

dimension, along the x-axis. The velocity of the ith rower is

dri

dt
¼
XN

j¼1

HijFj þ f i; (1)

where f i is a stochastic noise term, Fj is the trapping force,

and Hij captures the hydrodynamic interaction between the

N rowers. From Brownian dynamics, the noise has zero

mean and hf iðtÞf jðt0Þi ¼ 2kBTHijdðt� t0Þ.39 We define the

interaction tensor as

Hij ¼
I=c : i ¼ j

3

4c
a

rij

� �f

Iþ r̂ijr̂ij

� �
: i 6¼ j ;

8><
>: (2)

where c ¼ 6pga is the drag (g is the viscosity of the fluid),

and r̂ij and rij are the direction and distance between rowers.

The parameter f is introduced as a simple control for the

interaction range and takes some value between ½1; 3�. In the

far-field limit when the rower radius a is much smaller than

the distance separating them and f¼ 1, Hij is the Oseen ten-

sor. At the other extreme where f¼ 3, Hij is akin to the limit

of the Blake tensor near a wall. The interval of f creates an

interaction decay rate somewhere between being far from

any impediment (f¼ 1) and being near a no-slip boundary

(f¼ 3). The tensor allows the coupling between the rowers

to be altered in two ways. Changing f from 1 to 3 increases

the decay of the interaction, so the rowers no longer interact

over a long range but only with their close neighbours. The

second way to adjust the coupling is to vary the distance

between rowers. The rowers are arranged to encourage

FIG. 1. Rowers are a simple model for non-uniform oscillators that interact at

low Reynolds number. (a) Beads are driven by a power law potential k x1=2
r ,

where xr is the distance relative to the trap vertex. Once a rower is d from its

vertex, its trap switches (continuous to dashed potential in diagram). The dia-

gram illustrates two rowers, and each oscillates with amplitude A. More com-

plex arrays can be made, and we focus on systems of eight beads. (b) and (c)

Beads are placed in two rows. Within a row, the trap centres are spaced d
apart. The two rows are separated by dR. Depending on the spacing and inter-

action, the dynamics of the rowers tend to divide into block or chain popula-

tions. The chain is shown in (b), and the block is shown in (c). The two

populations are labelled P1 and P2, with blue and orange rectangles marking

the appropriate subset. The rowers are numbered in the block or chain config-

uration to ensure that the central beads are always indexed 2 and 3.
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separation into two subsets, with the eight beads placed in

two rows as shown in Fig. 1(b). To alter the coupling through

position, the distance between the rows dR is varied.

Preferred population configuration

The rowers tend to synchronise in either chain or block

configurations. Examples of the two geometries are shown in

Figs. 1(b) and 1(c). The chain configuration is shown in 1(b),

with the first population (P1) marked in blue and the second

(P2) marked in orange. Blue and orange also indicate P1 and

P2 for the block configuration in Fig. 1(c). The choice of

most natural subset depends on the interaction range and the

distance between the rows dR.

The simulation parameters are chosen to produce strong

interactions between the rowers. We want high negative cur-

vature, as defined in Ref. 38, and low noise. This ensures

strong in-phase synchronisation between a pair of rowers, so

any departure from this state is the result of additional rowers.

The curvature depends on the force at the beginning and end

of the trap, Fb and Fe, as well as the average force F0.

Explicitly c ¼ �2ðFe � FbÞ=F0, with Fb ¼ �k=2 ðAþ dÞ�1=2

and Fe ¼ �k=2 d�1=2. We set A=d ¼ 31, which results in a

curvature of c ¼ �0:7 for our trap potential.

Synchronisation between a pair of rowers in the pres-

ence of noise was also explored in Ref. 38. We define the

noise strength n in a similar way, but also include the dimen-

sionless quantity D0. This term scales the trap strength to

maintain a given period for a chain of four rowers moving

in-phase when the coupling range is varied by f.40 We relate

the noise to D0, the temperature T, and average trap force F0

by

n ¼ 2kBT

AD0F0

; F0 ¼
1

2
ðFe þ FbÞ; (3)

with A the amplitude of the oscillations and kB the

Boltzmann constant. The coupling is anisotropic in our sys-

tem due to its dependence on the direction of oscillation and

the geometry of the system. We compare the noise to the

interaction forces along x and y by scaling it using the near-

est neighbour coupling in each direction. The scaled noises

for x and y, nx and ny, are related to n by

nx ¼
2

3

d

a

� �f

n; ny ¼
4

3

dR

a

� �f

n: (4)

We set the ratio d/a¼ 6.86, and dR=a 2 ½6:86; 22:86�,
which results in dR=d 2 ½1; 3:33�. The dimensionless trap

strength is D0ks=ðca3=2Þ ¼ 3:28, where s is the period of a sin-

gle chain of four rowers moving in-phase, and d=a ¼ 0:057.

Unless stated otherwise, the noise is n ¼ 2:13� 10�5, i.e., the

noise is small when compared with the neighbouring interac-

tion in x, with maxðnxÞ ¼ 4:58� 10�3. nx lies within the

expected synchronised region38 when the results are rescaled

appropriately. This noise should not prevent the rowers coordi-

nating with their neighbours along x. The coupling strength of

vertically opposite rowers has a wider range, as both dR and f
vary [see Fig. 2(a)]. While the noise is initially small with

ny � 10�4, for larger dR=a and f, the noise could prevent

coordination between the rows with ny � 10�1. For the most

part, ny is small and the rower interaction along y exceeds the

noise.

Details of simulation

We simulated the rowers using the method of Ermak

and McCammon.39 The Brownian noise has zero mean and

is correlated by hf iðtÞf jðt0Þi ¼ 2kBTHijdðt� t0Þ. When

numerically solving, we used a time step equivalent to 1�
10�4 s. The simulations were run for 1000 cycles unless

investigating the lifetime. When measuring the lifetime, the

simulations were run for 2000 cycles and then reseeded until

at least 150 lifetimes were measured. The initial rower posi-

tions were randomly drawn from a uniform distribution

Uð�A=2;A=2Þ, with no preference in the initial trap orienta-

tion. To link with motile cilia and experimental work, we set

the bead radius to a ¼ 1:75 lm, the drag to c ¼ 0:073 Pa � s
�lm, and the period to s ¼ 0:49 s; s is the period of a single

chain of four rowers.

When classifying the simulations, the results are sepa-

rated into 40 cycle intervals. The first interval is discounted

as the rowers start from a random position. The mean and

variation of the order parameter in the remaining intervals is

used to categorise the simulation results.

Measures for order

The positions of the rowers oscillate in our system. To

highlight the repetitive nature of the motion, the distance is

mapped to a phase or “angle” /, a common approach in

cyclic systems.8 To determine the mapping, we adapted the

FIG. 2. The low noise level n ¼ 2:13� 10�5 generally does not impede the

interaction in y and produces chimera states with a long lifetime. (a) The

map of dimensionless noise scaled by the interaction in y, ny, for varying f
and dR=a when n ¼ 2:13� 10�5. For the most part, the noise is small

ny < 0:1, with ny � 0:1 the bright red. (b) The histogram of the simulated

lifetime LT measurements, with the fitted distribution shown in red, when

n ¼ 1:06� 10�4. (c) The relationship between average lifetime hLTi and

1=n is linear when f ¼ 1:6 and dR=a ¼ 9:1. The error bars indicate the 95%

confidence interval for the mean, determined using the pivotal quantity for

an exponential distribution. The fit suggests that the block chimera state is

stable when noise is not present.
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transformation to natural angles to account for the trap

switching. This defines the phase in such a way that it grows

linearly for a single rower. The explicit relation between

the phase and position is /ðtÞ ¼ NsðtÞpþ w½xrðtÞ� with

wðxÞ / x3=2;41 NsðtÞ is the number of switches undergone by

a rower at time t; Nsð0Þ ¼ 1 if the trap starts on the left. The

phase is used to determine two complex order parameters,

which distinguish between different states

ZðpÞðtÞ ¼ 1

Np

XNp

j¼1

exp i/ðpÞj ðtÞ
h i

; (5)

Z
ðpÞ
PL ðtÞ ¼

1

Np � 1

XNp�1

j¼1

exp ið/ðpÞjþ1ðtÞ � /ðpÞj ðtÞÞ
h i

; (6)

where p ¼ 1; 2 labels the two populations, so /ðpÞj is the

phase of jth in the pth population and Np is the size of the

population. ZðpÞ is a measure of a population’s mean phase,

and Z
ðpÞ
PL is the measure for mean phase-difference. The mag-

nitudes of ZðpÞ and Z
ðpÞ
PL gauge the coherence of a population,

with jZðpÞPL j measuring the variability in the phase-difference

between neighbours and jZðpÞj measuring how in-phase the

rowers are in each population. The population is incoherent

when jZPLj � 0 and phase-locked (constant phase-differ-

ence) when jZPLj � 1. jZj � 1 corresponds to the specific

case when the phase-difference is zero, but jZj � 0 occurs

for both incoherent and splay states; the splay state for four

rowers is /ðpÞiþ1ðtÞ � /ðpÞi ðtÞ ¼ p
2
. We use both measures to

classify the system.

RESULTS

The interaction range f and row spacing dR determine

the rowers’ behaviour. There are three states observed:

in-phase, chimera, and phase-locked. The chimera state has

two sub-categories—chimera-block and chimera-chain—

depending on the subset geometry. Figure 3 shows some

examples of these behaviours. When the interaction is long

ranged with f near one, there is no separation into subsets as

all the rowers oscillate in-phase. The synchronisation of the

rowers when f ¼ 1:1 and dR=a ¼ 8 is shown in Figs. 3(a)

and 3(b). It appears as vertical bands in the phase in Fig. 3(a)

and the convergence to one in Fig. 3(b). When the interaction

is short ranged, the oscillators settle into phase-locked states.

This appears as diagonal bands in the phase and jZPLj � 1

[see Figs. 3(g) and 3(h)], where f¼ 3 and dR=a ¼ 21:71.

The total interaction
P

i 6¼j Hx
ij tends to be weaker in these

cases, and so the rowers take longer to become coordinated.

The chimera state occurs in the intermediate range between

the in-phase and phase-locked states. In this state, one popu-

lation is in-phase, whilst the other is unable to settle with

defects developing whenever it approaches in-phase. This

causes jZj to rise and fall in the incoherent population. The

phase defects in the chimera state when f ¼ 1:6 and dR=a
¼ 10:28 are shown in Figs. 3(d) and 3(e). The defects create

FIG. 3. The chimera state forms in the intermediate range between in-phase motion and phase-locked states. (a) and (b) The phase and order of an in-phase

state, where dR=a ¼ 8 and f ¼ 1:1. The rowers start from a random position, but both populations (P1-blue and P2-orange) quickly form and maintain the in-

phase state with jZðpÞj ¼ 1. (c) The frequency distributions are similar for both populations when in-phase. The distributions are horizontal, contrasting the

“same” rower in each population, i.e., same number or relative position. For each rower the distribution is scaled by f0, the frequency of a rower without inter-

action. (d)–(f) Only one population can coordinate when dR=a ¼ 10:29 and f ¼ 1:6. Defects develop in pairs of rowers from the second population P2, pre-

venting in-phase motion. The defects result in apparent ‘breathing’ in the orange curve of the order parameter and a tail developing in the frequency

distribution. The skew is responsible for the drop in mean frequency, behaviour associated with the chimera state. (g)–(i) For a sufficiently short interaction

range, the phase-locked state occurs, dR=a ¼ 21:71 and f¼ 3. The total strength of the interacting forces is smaller for short ranged interactions, so the rowers

are slow to settle into the phase-locked state.
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the apparent “breathing” in the order parameter jZj of the

unsynchronised population. The frequency distributions of

phase-locked and in-phase states are symmetric, but the dis-

tribution of incoherent rowers develops a tail [see Figs. 3(c),

3(f), and 3(g)]. This leads to a reduction in mean frequency

for the unsynchronised population in the chimera state.

When noise is present, the subsets do swap roles, but as

the noise decreases the chimera intervals last for longer peri-

ods. When comfortably within the chimera-block region [see

the circle marker in Figs. 4(a) and 4(c)], the lifetime of the

state increases linearly with 1=n (see Fig. 2). Although the

lifetime of the chain state increases with decreasing noise, it

also exhibits chaotic characteristics. This makes it difficult to

make definitive claims concerning the long term behaviour.

Since we are interested in a physical system with noise, we

classify the chimera state by considering 40 cycle intervals.

When more than half the intervals measure one population

remain synchronised whilst the other fluctuates, the state is

FIG. 4. Regions for the different states can be classified using the growth rate or the difference between intra- and cross- population forces. (a) and (b) The

classification of the different regions using the eigenmode growth rates Gj: the in-phase region (burgundy), phase-locked region (yellow), and the chimera

region between (orange). The in-phase state is observed when the growth rate of the in-phase eigenmode G1 outstrips the others. We define the in-phase section

by G4 < 0:125 and G2 � G4 > 0:012, which ensures that the growth rates of the other states are small; Gj are indexed in descending size. Phase-locking occurs

when all the growth rates converge. The region where the rates have coalesced is defined by the faster growth rates being similarly spaced to the slower, more

closely spaced states, G1 �G2 < G5 � G7 and G1 �G3 < G4 � G7. The stripes mark when the block formation is preferred to the chain. This region is defined

by G2 �G3 < G4 � G5, i.e., using the slower states to determine when the difference in growth between chain and block states is small. (c) and (d) The colour

indicates the difference in population forces, M ¼ ðl� �Þ=ðlþ �Þ. Lines for M¼ 0.3, 0.5, 0.7, and 0.9 are plotted and labelled. The cusp in the lines indicates

where the rowers swap from preferring block configuration to chain. The cusp is marked by a dashed line in (d), i.e., the expected transition point from block

to chain. (b) and (d) The results of simulation are superimposed over the different regions. White squares, cyan circles, and black triangles mark in-phase, chi-

mera, and phase-locked states. A grey cross indicates the state could not be classified, whilst an open square marks a mixture of in-phase and chimera behav-

iour. To distinguish the chain-chimera, a plus is added to the cyan circle. The lifetime stability for the block-chimera was measured at the dark point in (a) and

(c), where f ¼ 1:6 and dR=a ¼ 9:14.
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labelled as a chimera. The states are classified as block or

chain by comparing jZj for both configurations; it is then cat-

egorised as the geometry that measures a different spread in

jZj for each population.

MEAN INTERACTION

The observed chimera state, particularly the rise and fall

in incoherent population mentioned in the Results section, is

reminiscent of the “breathing” seen in populations of

Kuramoto phase oscillators.14,37 The Kuramoto populations

are uniformly coupled, suggesting that the mean population

forces encapsulate the chimera behaviour. To parallel this

work, we consider the difference between the mean cou-

plings within each subset M

M ¼ l� �
lþ � ; (7)

l ¼
X
j 6¼ 1

j 2 P1

Hx
1j; � ¼

X
j2P2

Hx
1j; (8)

where l is the sum of forces parallel along x within a popula-

tion acting on a bead labelled as number one in Fig. 1. The

mean cross population force � is the sum of forces on the

same rower exerted by the other population. Using the mean

interaction, we find that our results are reconcilable with the

Kuramoto oscillators, and the transition from block to chain

subsets can be predicted.

In-phase behaviour is expected when M is small, and the

cross-population forces are comparable to intra-population,

i.e., f � 1, and forces are long-range. In contrast, the mean

interaction becomes a poor approximation for the dynamics

when the interactions are short range, particularly for the

chain configuration, where the difference between maximum

and minimum spacing is larger. The effect of varying f and

dR on M is shown in Figs. 4(c) and 4(d). The expected shift

from block to chain is at the cusp in the M curves. It occurs

when the chain population sum lC exceeds the block lB. The

chain population’s enhanced sensitivity to f is also apparent,

seen as the section of high M when dR increases and

3 > f > 2. Simulation results are overlaid in the map of M in

Fig. 4(d). The different markers in Fig. 4(d) correspond to

the in-phase, chimera, and phase-locked states. The chain-

chimera states are marked with a plus. A mixture of chimera

and in-phase is recorded when over half the simulation regis-

ters in-phase motion but there is an interval of chimera

behaviour, and shown by the empty squares. If the simula-

tion does not measure consistent high levels of jZPLj in either

population, then it is not classified and is marked by a grey

cross. The cusp in M occurs on the navy line. The chain

states begin to be observed when lC > lB. More generally,

the chimera state is recorded when 0:7 > M > 0:4. The

upper bound results from the shortened interaction range,

whilst the lower bound is consistent with Ref. 37. There is

no direct correspondent for the phase lag from the Kuramoto

model, but the boundary near 0.4 is in accord with a moder-

ate range of phase lag. For small dR, the intra-population

forces are more uniform, so the map of M best captures

results that occur in this range. In particular the dark patch

where M< 0.25, when 6:8 < dR=a < 11:5, captures the tran-

sition from in-phase to block chimera behaviour.

Given its small size, our chimera is surprisingly stable.

Particularly when contrasted with the uniformly interacting

Kuramoto oscillators.42 The chimera states observed in small

numbers of BZ oscillators were also noted to be oddly stable,

as were small networks of amplitude-phase coupled

lasers.17,43 Their stability was attributed to the differences

between them and simple phase oscillators. The geometric

updating traps of the rower model may be producing a simi-

lar stabilising effect here. This stability would translate to

experimental realisations of rower systems and could have

biological relevance in ciliated tissues.

THE EIGENMODES

Eigenstate growth rate

The behaviour of rower ensembles can be understood

qualitatively from their fundamental interaction by projec-

ting onto appropriate eigenstates. This technique has previ-

ously been applied to rings of rowers,36 two rows of rowers

with varying oscillation direction,44 and a similar approach

has been used to understand synchronisation in quantum

oscillators coupled through dissipation.45,46 Following the

procedure in Ref. 36, where the distance between the rowers

rij is approximated by the distance between their trap centres

(a function of d and dR) and noise is neglected, the system

configuration at each time can be projected onto the eigen-

vectors of the interaction tensor. To express the trap force in

terms of the projection, the potential needs to be parabolic.

Earlier work in Ref. 38 showed that rower synchronisation is

governed by the curvature of the potential. Consequently we

use a negative parabolic potential with the same curvature as

the earlier square root form to calculate the eigenmodes, i.e.,

the potential �kpx2
p with dp=a ¼ 0:37 [see Fig. 5(a)]. To

match the x1=2
r potential, the parabolic trap strength is set by

kp ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ d
p

�
ffiffiffi
d
p� �

=ððAþ dpÞ2 � d2
pÞ. In shifting to the

new potential, the distance is now measured relative to the

turning point of the parabola. The new potential means

hj ¼ êj � r, the projection of the rower positions onto the jth
eigenvector, obeys

hjðtÞ � ðêj � sÞ � sj
d

dt
hjðtÞ ¼ 0; (9)

sj ¼
c=ð2kpÞ

1þ 3

4
ða=dÞfkj

; (10)

where kj is the eigenvalue associated with the vector, s the

trap position vector, and kp the trap strength for the parabolic

potential. This expression only holds between trap updates,

i.e., s is constant.

Employing a similar argument as that in Ref. 36, but

focused on divergence, predicts that the observed state will

be the fastest diverging state because the state that diverges

fastest experiences the greatest growth between trap updates.

Using the approximation of a parabolic potential, the growth

rate of the jth mode over one switch Gj is

123108-6 Hamilton, Bruot, and Cicuta Chaos 27, 123108 (2017)



Gj ¼
exp ts=ðntsjÞ
� �

� 1

XN

k¼1

fexp ts=ðntskÞ½ � � 1g
: (11)

The growth is measured over the median time between

any two switches ts=nt, with ts the time between a rower’s

switches and nt the median number of traps expected to

update over this period. The switch time is interpolated

from the simulation results, as are the number of switches.

When in-phase nt¼ 1, and for the chimera and phase-locked

states, nt¼ 5. Each state will be diverging, but the system

prefers the state which diverges the quickest. The index j
orders the states by their rate of divergence, and G1 is the

fastest growth while G8 is the slowest. The four states fastest

to diverge are in-phase, anti-phase chain, anti-phase block,

and anti-phase pairs. Representations of these four states are

shown in Fig. 5(b).

The growth rates when nt¼ 5 are plotted against the

interaction range f for the different states in Fig. 5(c). These

growth rates were used when classifying the different regions

for the behaviour. The general trend when f increases is for

the states to converge to equal representation (1/8). The inset

zooms in on G5, G6, G7, and G8. The difference between G5

and G6 (and G7 and G8) is small; as such, there are only six

states well separated. We classify the regions using the well

separated states G1, G2, G3, G4, G5, and G7.

Classification using growth rate

The in-phase motion is associated with the fastest

diverging state, while the phase-locked state is a sequence of

states involving combinations of all the different eigenstates.

The in-phase state occurs when a single growth rate exceeds

others, whilst the phase-locked state is observed once all the

rates have converged. The chimera state occurs in the range

between, where the in-phase growth no longer dominates,

but all the states have yet to converge.

We expect the rowers to be in-phase when G1 is much

larger than the other rates. We find the in-phase region to be

the intersection of G4 < 0:125 and G2 � G4 > 0:012. The

eight eigenstates mean equal representation occurs at

Gj ¼ 0:125, with G1; G2; G3; G4 approaching this limit

from above and G5; G6; G7; G8 from below. The in-phase

boundary conditions ensure that all but the fastest state must

be clustered at their minimum value. This is the dark region

shaded in Fig. 4. To find the phase-locked boundary, the

growth rates need to be comparable. The region is found as

G1 � G2 < G5 � G7 and G1 � G3 < G4 � G7, i.e., using the

more closely spaced, slow growth rates as the threshold for

the faster rates converging. This is the pale yellow region

marked in Fig. 4. The chimera occurs between these regions,

with the transition between block and chain geometries

reflecting a reduction in the coupling between the rows.

Increasing dR, i.e., decoupling the rows, causes anti-phase

row states to converge (e.g., ê1 and ê2, or ê3 and ê4). As with

the phase-locked state, the difference between the slower

states was used as the benchmark for similarity. We find the

block region to be G2 � G3 < G4 � G5, which ensures that

the difference between the block and chain growth is com-

paratively small. This implies that the row coupling is still

strong, and as such the block geometry develops.

FIG. 5. The growth rate of the interaction tensor’s eigenstates Gj when the trap potential is parabolic. (a) Approximating the original x1=2 potential with a negative

parabola that maintains the curvature. The original potential is shown in blue, and the new parabolic potential is in red. The parabola has been translated by U0 to

highlight the similarity to kx1=2
r , but the force is unaffected by this value. (b) Representations of four eigenstates states. In-phase motion or ê1 grows the fastest, fol-

lowed by ê2 anti-phase chain population, ê3 anti-phase block populations, and ê4 anti-phase pairs. (c) The growth rate of the different eigenstates assuming the

rowers are either phase-locked or in the chimera state, i.e., nt¼ 5, with dR=a ¼ 10:29. The growth rate is indexed by descending size, so G1 is the fastest rate and

G8 the slowest. The difference between G5 and G6 and G7 and G8 is minimal, so only one of each pair is considered when classifying the states. These states are

shown in the inset, which is a closer view of the dashed section in the lower left corner.
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The simulation results are superimposed over the origi-

nal image in Fig. 4(b). White square, cyan circles, and black

triangles indicate in-phase, chimera, and phase-locked states.

The chain-chimera sub-category is marked by the addition of

a plus to the cyan circle. States unable to be classified are

indicated by a grey cross, and states that are a mixture of chi-

mera and in-phase are indicated by open squares. The growth

rate captures the rowers’ behaviour well for large dR, but

some features are missing at lower dR.

The in-phase boundary intersects with the states exhibit-

ing a mixture of chimera and in-phase behaviour (open

circles) but misses some in-phase states near dR=a � 10:3.

Similarly the phase-locking border passes through the

unclassified states (grey crosses) at large dR, but there are a

mixture of phase-locked and block-chimera included by the

border at small dR. The block boundary covers most block

states, but there are some inconsistencies for particularly

short ranged interactions. The success of the growth rate

boundaries is a good indicator that the chimera state involves

a mixture of ê1; ê2; ê3, and ê4 but is less clear on the exact

combination.

CONCLUSION

We find the chimera state using simulations of a simple

model for non-uniform oscillators with a hydrodynamic

interaction. The resulting states can be interpreted using the

eigenmodes of the interaction tensor and their associated

growth rates. Specifically the chimera state appears when the

faster growth rates have converged but not with the slower

states. The faster states converging means combination of

these states is not suppressed, and the system separates into

two subsets. This gives rise to the synchronised and incoher-

ent subsets expected of the chimera state. Alternatively, the

system can be analysed by assuming the existence of two

subsets and considering their mean interaction. This simple

approach links the rower chimera state results to chimera

states in Kuramoto oscillators. Additionally, the mean inter-

action predicts the shift in preferred population geometry

from block to chain by comparing the intra-population forces

for each geometry. In contrast to the eigenmodes whose

growth rates suggest which eigenstates govern the chimera,

the mean interaction is a simple indicator of which geometry

is preferred.

In conclusion, we have simulated the chimera state

using a simple, minimal model for non-linear oscillators

interacting at low Reynolds number. We would expect this

to emerge in experimental observations of the chimera state

in oscillators with hydrodynamic coupling, and it may play a

part in understanding collective dynamics of motile cilia.
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