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I. MATERIALS AND METHODS

We have performed acoustic cavitation in n-heptane (Sigma Aldrich, puriss. p.a., ≥ 99%) and ethanol (VWR
Prolabo Chemicals, 99.98% v/v), using a hemispherical piezoelectric transducer to focus 1 MHz sound bursts (a few
cycles long) in a small region of the liquid far from any wall1. Ramping the excitation voltage of the transducer, the
cavitation probability increases from 0 to 1. The “cavitation threshold” corresponds to a 50% cavitation probability
during a burst. In a previous study2, the pressure at the focus was estimated indirectly by studying the effect of the
static pressure in the liquid on the cavitation threshold. Here, we have measured the density of the fluid at the focus
directly with a fiber-optic probe hydrophone3, which is sensitive to the modulation of the refractive index by the
sound wave. To convert the density into a pressure, we used an equation of state for the liquid at positive pressure,
and extrapolated it down to about −30 MPa. More details will be given elsewhere.

II. COMPARISON BETWEEN THE STATIC PRESSURE AND FOPH METHODS

Fig. 1(a) and S1(a) show pressures at the cavitation threshold slightly more negative with the FOPH than the
previously reported values. Here we give an explanation for the discrepancy.

The static pressure method in Ref. 2 was based on the dependence of the transducer voltage at the cavitation
threshold on the positive static pressure applied to the liquid. A linear extrapolation gave an indirect estimate of the
negative cavitation pressure. However, nonlinearities lead to extrapolated pressures less negative than the real ones4.
The new experiments with a FOPH give direct access to the density of the liquid at the cavitation threshold. The
only remaining assumption resides here in the conversion of the density into a pressure, that requires to extrapolate
to negative pressure an equation of state measured at positive pressure. In the case of water, we have previously
measured the equation of state at negative pressure and proven that this assumption is valid5. It is reasonable to
assume that the extrapolation would also be valid for heptane and ethanol, thus yielding to FOPH points that are
more accurate than the points from the static pressure method.

III. STUDY OF n-HEPTANE AND WATER

The analysis carried in the Letter on ethanol can be extended to other liquids. Figures S1, S2, S3, S4 below show
results for n-heptane and water.

IV. FORMULA OF THE MODIFIED CNTS

This sections gives the formula we have used to calculate the CNT1 and CNT2 parameters, and the critical volumes
from the nucleation theorem.

A. CNT1

In the CNT1, Eq. (8) is written at the critical radius, Rs = R∗s . R∗s is trivially deduced from the Laplace equation
as a function of the energy barrier ∆Ω, and ∆P , that are known from the experiments:

R∗s =

(
3∆Ω

2π∆p

)1/3

. (S1)

Since Eq. (3) with Rs = R∗s links σs(R
∗
s ) to ∆Ω and R∗s , we obtain the following expression for the Tolman length:

δ∞ =
σ∞
∆P

[
1−

(
3∆Ω

16πσ3
∞

)1/3
]
. (S2)

Compared to CNT0, the critical equimolar radius now depends on δ∞. The derivation is done in Ref. 6 and gives

R∗e =
2σ∞
∆P

− δ∞ . (S3)
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FIG. S1. Same as Fig. 1 in the Letter, but for (a,b) heptane and (c,d) water. The point in (c) corresponds to the cavitation
pressure measurement in a water inclusion in a quartz crystal14.
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B. CNT2

Eqs. (2), (7) and (9) form a system of equations that can be solved for δ∞ and δ2∞ + α. The relevant solutions are
δ∞ = −R

∗
s

2
(1−

√
∆)

δ2∞ + α = (R∗s )
2

(
2σ∞
R∗s∆P

−
√

∆

)
,

(S4)

where

∆ = 1− 4R∗e
R∗s

+
8σ∞
R∗s∆P

. (S5)

Here, R∗e is obtained in the experiments from the nucleation theorem and R∗s is given by Eq. (S1).

C. Choice for the kinetic prefactor

1. Cavitation

The CNT0 and its variants CNT1 and CNT2 rely on the choice of an expression for the kinetic prefactor J0.
For cavitation, we chose J0V τ = 1019, where V is the volume where the acoustic wave is focalized, and τ the

duration of an acoustic burst. The value is taken from our previous study in water1. The actual value of J0V τ in the
present experiments might differ from the 1019 value. However, a change by a factor 10 in this constant only leads to
a shift of the experimental points by about 0.015 nm for the CNT1’s δ∞ and 0.5 nm3 for V ∗e (for both heptane and
ethanol). This is much smaller than the statistical deviations seen by repeating cavitation pressure measurements at
the same temperature several times.

2. Condensation

For condensation, the nucleation rates are calculated from the supersaturation S = Pv/Psat(T ), where Pv is the
pressure of the metastable vapor, and Psat(T ) is the equilibrium vapor pressure for a flat interface. Treating the vapor
as a perfect gas, and the liquid as an incompressible phase leads to:

∆P =
kT lnS

vl
, (S6)

where k is the Boltzmann constant and vl the volume per molecule in the liquid. (Including gas non-idealities has
been shown to have little effect on the nucleation rates for n-nonane7.) For the kinetic prefactor, we used

J0 =

√
2σ∞
πml

vl S
2

(
Psat(T )

kT

)2

, (S7)

with ml the mass of a molecule. The actual value of J0 is still being debated. In particular, a “1/S correction” is
sometimes added to Eq. (S7)6. This, again, only leads to insignificant changes in the quantities explored in this study.
For instance, the typical shifts from the data in8 are: 2 orders of magnitude for Jexp/JCNT, 0.1 nm3 for V ∗e , 0.02 nm
for the CNT1’s δ∞, and 2× 10−4 nm and 0.015 nm2 for the CNT2’s δ∞ and δ2∞ + α.

D. Derivation of the critical volumes from the nucleation theorem

Critical volumes are obtained from the nucleation theorem Eq. (5). When writing Eq. (6) and converting ∆n∗ into
a volume, two consecutive approximations are made. First, we assume that the density at the center of the nucleus
is the density of the homogeneous phase, ρL or ρV. This allows us to link the critical volume to the excess number of
molecules by:

V ∗e =
n∗e
ρL

=
∆n∗

ρL − ρV
for droplets (S8)

=
n∗e
ρV

= − ρV
ρL − ρV

∆n∗ for bubbles, (S9)
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FIG. S3. Same as Fig. 3, but for (a,b) heptane and (c,d) water.
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where n∗e is the number of molecules in the nucleus. The second approximation we make is that ρL � ρV, which
is easily satisfied: for the data analyzed in the Letter and here, the maximal value of ρV/ρL is 0.68 × 10−3 for
condensation and 1.1× 10−3 for the FOPH experiments. The critical volume then simply becomes

V ∗e =
|∆n∗|
ρL

, (S10)

for droplets and bubbles.
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represent the measurements and the lines correspond to the different polynomials used to extrapolate the curve up to U = Ucav:
P1 (dashed line), P2 (solid line) and P3 (dash-dotted line).

The two approximations above lead to an underestimate of the critical volumes9,10. Correcting for these would
therefore make the discrepancy between the real critical volumes and the CNT1’s volumes that we highlight in the
main text stronger.

V. EFFECT OF THE EXTRAPOLATION OF THE VOLTAGE TO PRESSURE RELATION
(CAVITATION EXPERIMENTS)

A large part of the uncertainties in our experiments do not come from statistical error bars. To measure the
cavitation pressures and the critical volumes in the fiber-optic probe hydrophone experiments, pressures are measured
for different amplitudes of the sound wave created by a piezo-electric transducer. The amplitude is controlled by the
amplitude of the oscillatory voltage U applied to the transducer (see Ref. 3 for details on the setup). Unfortunately,
the voltage cannot be increased up to the value for which there would be 50 % chance to cavitate as it would damage
the end facet of the fiber. To obtain the pressure Pcav at the voltage Ucav, the pressure is measured for several values
of U below about 0.8Ucav, and we fit the data with some function to extrapolate the pressures to Pcav. We have tried
several functions for the extrapolation, and three of them gave sufficiently small residuals:

P1(U) = a2U
2 + a1U , (S11)

P2(U) = b2U
2 + b1U + b0 , (S12)

and

P3(U) = c3U
3 + c2U

2 + c1U + c0 , (S13)

where the ai, bi and ci are the fitting coefficients. We show the three extrapolations for a given temperature in heptane
and ethanol in Fig. S5. On this plot, Pcav can simply be read for U = Ucav. To calculate the critical volumes from
the nucleation theorem within the framework of CNT1, Eq. (6) is rewritten in terms of a derivative ∂P/∂U of the
pressure with the voltage, so that the critical volumes are related to the slope of P (U) at Ucav. Since we could not find
any strong argument to determine which extrapolation is the best, we display in Figs. S6, S7 and S8 the quantities
obtained with the three polynomials. The graphs of the main text (and their equivalents for heptane and water in
Figs. S1, S2, S3 and S4) use polynomial P2 as its residuals were slightly better than for the other functions and
because it often lies between the values computed with P1 and P3. The choice of the function for the extrapolation
can lead to significant changes of the various quantities plotted, especially the critical volumes. However, no matter
what function is used, there is no master curve emerging in Fig. S7 (for heptane), and it appears very unlikely from
Fig. S8 that the real critical volumes from the nucleation theorem could match the volumes from the CNT1.
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VI. CNT2 FOR CAVITATION

Cavitation data have been omitted in the CNT2 analysis. The reason is that increasing the order also increases
the error bars, and the errors induced by the P (U) extrapolation (see above) lead to a large uncertainty in δ∞ and
δ2∞ + α. Moreover, the values of the cavitation pressures and of the critical volumes are such that the solving of
the second order polynomial to obtain the solutions in Eq. (S4) sometimes gives no real roots. Fig. S9 shows the
cavitation analysis for the points that do have a solution, along with the condensation experiments. The systematic
error induced by the choice of the P (U) relation is typically of the order of the range of the y axis of the graphs for
both δ∞ and δ2∞ + α.

VII. ESTIMATE OF THE STATISTICAL ERROR BARS

Whenever it was possible, we have put statistical error bars on the quantities δ∞ and V ∗e from CNT1, V ∗e from the
NT, and δ∞ and δ2∞ + α from the CNT2. This section describes how they were calculated.

A. Fiber-optic probe hydrophone experiments

In the fiber-optic probe hydrophone (FOPH) experiments, the error bars in δcav∞ have been estimated on repeated
experiments at a single temperature, T = 293 K. Between two cavitation pressure measurements, the fiber was removed
and repositioned at the acoustic focal point. The results were dispersed with a standard deviation of 0.4 MPa, which
we took as the error bar for all temperatures. To complement this statistical error, we also display, in the Letter
and here, the FOPH measurements in heptane and ethanol for two series of temperatures (for each liquid). When
switching to a new series, the fiber was cleaved to renew its end facet, which leads to an additional uncertainty in the
measurements.

The critical volumes from the nucleation theorem V ∗e rely on a nonlinear fit of the probability to cavitate Σ(U),
with one of the parameters, ξ, representing the “width” of the Σ(U) curve that has an “S” shape2. The error bar
on ξ has been estimated for each liquid for a single temperature. Assuming that the experiment gave a set of points
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{(Uexp,Σexp)i}, we have generated numerically several sets {(Uexp,Σnum)i} and fitted an S-curve on each of them,
thus providing us with a standard error on ξ. The generation of a given point (Uexp,Σnum) is done by taking for Σnum

a random value corresponding to the average of N values σj ∈ {0, 1} with a probability of obtaining 1 equals to Σexp.

B. Condensation experiments

The condensation data typically correspond to measurements of the nucleation rate J for different values of the
supersaturation S, and of the temperature T . For a given temperature, the S(J) curve is expected to be a portion
of a line, and such a fit is indeed performed to obtain the critical volume V ∗e . We extract two statistical errors from
that fit:

• The standard error on the slope.

• A standard error on the average nucleation rate for the given temperature. When plotting the S(J) fit function
together with the experimental points, these are dispersed around the fit function. Assuming that there is an
error in the J measurements, but that S is known precisely, this allows to estimate an overall statistical error
in a single J measurement, ∆J0, from the deviation of the experimental J to the fit function.

These made possible the calculation of standard errors on the following quantities:

• The first error above is used to get the statistical error on V ∗e (from nucleation theorem).

• Since we used, for a given temperature, the average value (over all S) of J as an input in the δ∞ and V ∗e
formulas, the standard errors on these quantities simply derive from the standard error ∆J = ∆J0/

√
N , with

N the number of points for the fit.

• The δ∞ and δ2∞ + α quantities both depend on the two parameters J and V ∗e . We have noted that in most of
the cases the error due to J in δ∞ and δ2∞ + α is at least 10 times smaller than the error due to V ∗e . We have
therefore only included the standard error due to the critical volumes in δ∞ and δ2∞ + α.
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VIII. SECOND ORDER APPROXIMATION FOR THE SURFACE TENSION σs

A. Validity

Eq. (9) is derived by Taylor expanding and integrating the Gibbs-Tolman-Koenig-Buff (GTKB) equation (Eq. (26)
in Ref. 11) to second order in 1/R∗s , by neglecting terms such as δ3∞/(R

∗
s )3 and α2/(R∗s )4. For each pair of values

(δ∞, δ
2
∞+α) from the experiments, we have compared the value of σs from Eq. (9) with the full numerical integration

of the GTKB equation. For the 34 points used to plot Figs. 4 and S4, the maximum relative error is 3.7 %, and 29
points give an error of less than 1 %, which makes Eq. (9) an excellent approximation for realistic ranges of parameters
for condensation.

B. Comparison of the two terms in the σs expansion of the CNT2

With the beginning of the use of models including a second order related to the rigidity of the interface, some debate
emerged about the relative amplitudes of the two terms 2δ∞/R

∗
s and (δ2∞ + α)/(R∗s )2. In simulations, models that

include the second term only, or that include the two terms12,13 have been tested. For the experiments, their ratio,
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extracted from the condensation measurements, is shown in Fig. S10. Overall, we found that the two quantities are
often of the same order of magnitude. Sometimes, the ratio takes values much larger than 1, but this only happens
when δ∞ is very close to 0, so that these points may have large error bars, because of the error in the δ∞ values.
Therefore, we expect that a model of a surface tension varying as σ∞/σs = 1 + C/(R∗s )2, with C a constant, would
display inconsistencies similar to those found with the CNT1 model.

IX. FITTED CNT2 PARAMETERS FOR ETHANOL

Considering the condensation data only, we obtained an overall agreement of all the data in the sense that the
points are closer to master curves for δ∞(T ) and (δ2∞+α)(T ) in the CNT2 than what was found for δ∞ in the CNT1.
The best results are obtained for ethanol. We have fitted in this case these functions by simple expressions that can
be used as empirical functions, namely a constant δ∞ and a linear δ2∞ + α:

δ2∞ + α = A(T − Tref) +B . (S14)

With Tref = 298.15 K, the fit parameters are δ∞ = 0.04095 nm, A = −0.005460 nm2/K and B = −0.3352 nm2.
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