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Motile cilia are highly conserved structures in the evolution of organisms, generating the transport of
fluid by periodic beating, through remarkably organized behavior in space and time. It is not known how
these spatiotemporal patterns emerge and what sets their properties. Individual cilia are nonequilibrium
systems with many degrees of freedom. However, their description can be represented by simpler effective
force laws that drive oscillations, and paralleled with nonlinear phase oscillators studied in physics. Here a
synthetic model of two phase oscillators, where colloidal particles are driven by optical traps, proves the
role of the average force profile in establishing the type and strength of synchronization. We find that
highly curved potentials are required for synchronization in the presence of noise. The applicability of this
approach to biological data is also illustrated by successfully mapping the behavior of cilia in the alga

Chlamydomonas onto the coarse-grained model.
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From pacemaker cells in the heart [1,2] to laser-based
communication [3], from cricket songs [4] to cells in
developing embryos [5], synchronization is a central con-
cept of science [6]. Recent work on hydrodynamics points
to a new kind of synchronization [7], with experimental
and theoretical evidence supporting the original hypothesis
by Taylor [8] that the coordinated beating of cilia and
flagella [9] is caused by the interactions through the sur-
rounding fluid [7,10-14]. Understanding this physical
problem has importance for technology as well as biology,
where actively driven filaments (cilia and flagella) are
ubiquitous, and key to the functionality of diverse tissues
and possibly to the evolution of multicellularity. One cen-
tral question is how the internal engine of cilia integrates
the cues coming from the fluid in order to achieve syn-
chronization with neighbors, or lose it when this is needed.

Current technology allows us to build micron-scale ac-
tively driven units that exhibit hydrodynamic synchroniza-
tion, and that are simple to describe theoretically, allowing
quantitative studies of collective dynamics [14-17]. We
have developed a configuration-dependent geometric-
switch feedback system to drive colloidal particles with
optical traps. In this Letter, extending previous work on
two [14] and more [16] driven harmonic oscillators, we
show how a general form of driving potential determines
the dynamical steady state in competition with thermal
noise. The driving potential represents in a coarse-grained
fashion the internal force engine with which the active unit
pushes the fluid during each beating cycle. We relate
the experimental findings to fully stochastic Brownian dy-
namics (BD) simulations [18], and we study the system
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analytically (simplifying the role of thermal noise by ne-
glecting the coupling of thermal fluctuations).

The motion of two externally driven spherical particles
at low Reynolds number is described by the force balance

0=F, — ZH;jlrj + £,(2), (1)
J

where i € {1, 2} indexes the bead. F, represents the driving
force acting on bead i, and r; is its velocity. The drag is
modeled by the Oseen tensor H [19] and f; is a stochastic
term describing the Brownian force on bead i. For the time
scales considered here, the noise is adequately described
by (fi(1)) = 0 and (f;(1)f;(¢')) = 2kgTH; ' 8(t — ') [20].
We consider for simplicity only the case of driving forces
F; parallel to the direction of alignment of the particles x,
which leads to coupling forces also directed along x (aside
from fluctuations). Projected along this direction, the sys-
tem of equations becomes

0= Fi(x, 1) = y(; — exp) + f1(0),
0= Fy(xy, 1) — y(h, — €x1) + f(2), (2

where € = 3a/(2d) is the coefficient describing coupling
between the particles, a is the bead radius, d is the mean
distance between the two beads, and y = 67 na is the drag
coefficient given a viscosity 7. The nondiagonal terms of
the Oseen tensor originate from the flow field created by
one bead and acting as a drag on the other bead.

A “switch” rule maintains colloids out of equilibrium
[21] [Fig. 1(a)]: the basic oscillation cycle of each bead is
built by alternatively activating two traps, described by the
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FIG. 1 (color online). (a) Selected frames showing a single
bead driven by optical traps through the geometric switch rule.
The direction of the gradient of laser intensity is shown by the
arrows. The direction of the gradient is reversed when the
particle reaches a position defined by the dashed line; the bead
is maintained in oscillation. (b) Mean driving potentials for a
bead driven in potentials of positive (1), null (2), and negative (3)
curvature. (c) Schematic showing that a generic potential is
modeled in the theory by “two slopes.” The curvature parameter
¢ is measured from the mean potential in (b) by fitting the slopes
at —A/2 and A/2, giving F), and F, for both decreasing and
increasing potentials. Experimental parameters in (b): A =
31 um, d=10 um, T=296K, F,~0.53pN, and c =
0.38(1), —0.11(2), and —0.40(3). Experiments are 2 min (single
bead) and 5 min (two beads) long, while simulations in Figs. 3
and 4 are equivalent to 2000 s.

same potential, but centered on different positions. The
simulations consider potentials of the form k,x“, where
the parameter « characterizes the curvature. When the first
trap is active and the particle is moving towards the equi-
librium position, the switching occurs when the bead
reaches a position distant s from the active trap center.
The bead is then driven in the other direction, until it
reaches the next switch, distant s from the trap center
(see the Supplemental Material [22]for a mathematical
expression). The geometric switch imposes a constant
amplitude of oscillations. Wollin and Stark [23] recently
showed numerically that in a system of active oscillators,
driven with the geometric-switch rule, the potential shape
determines the in-phase or antiphase character of motion
between nearest neighbors.

Experimentally, potential landscapes of varying curva-
tures are realized with time-shared optical traps, with a
designed gradient of laser intensity (see the Supplemental
Material [22] and Ref. [15] for details). Experimental
potentials can be approximated by the power laws in
simulations. More simply, their shape is captured by a
parameter

F, —F,

TR, ¥

C

which depends only on the forces F;, and F, at the
beginning and the end switch positions respectively,
see Fig. 1(c). We find that all the effects due to potential
shape can be related to this curvature parameter ¢ and to
the mean force Fy = (F), + F,)/2, as also suggested in
Ref. [23] (BD simulations and the analytical calculation
presented in the Supplemental Material [22] support this
approximation).

Experimental potentials are created with different cur-
vatures, as shown in Fig. 1(b). The potentials are measured
from the position x(¢) of a single bead oscillating, by
constructing a histogram of the position of the bead in
time, relative to the switches of the traps. This procedure
averages out the thermal noise, showing the difference of
curvature in the three experiments. Experiments are con-
ducted with 3.47 um diameter silica beads from Bangs
Labs, diluted in a water-glycerol solution with a viscosity
of 2.2 mPas. Trapped beads are maintained at least 70 xm
far from any surface of the microscope slides in order to
avoid effects of wall interactions. More details about the
tweezers setup are provided in Ref. [24].

These optically driven oscillators are the first experi-
mental realization of a hydrodynamically synchronized
system in which the transition between in phase and anti-
phase behavior is controlled simply by changing the driv-
ing forces. Numerical simulations of power law potentials
are carried out, with different exponents « while choosing
stiffnesses k,, such that the period of a cycle stays constant.
These show in general synchronized dynamics, with a
transition at the linear drive condition, i.e., at a = 1
(¢ = 0). Figures 2, 3(a), and 3(b) show the clear antiphase
behavior observed in the steady state for potentials with
positive curvature, and the in-phase behavior with negative
curvature. The system with linear drive is not synchro-
nized. A synchronization order parameter Q(k) can be
calculated for each half cycle k of oscillation of the
bead 1 [14],

-1 Sk+1
0w - ——— f dir (Do), (4
Sk Ky

Sk+1 — k

with s, the time at the kth switch of bead 1 and o;(¢) = *1
the variable defining the state of the potential for bead i
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FIG. 2 (color online). Experimental tracks of two beads
coupled hydrodynamically, for the three driving potentials char-
acterized in Fig. 1(b). Positive curvature leads to antiphase (AP)
synchronization while negative curvature leads to in-phase (P)
synchronization. In the limit case of linear potentials (zero
curvature; central section of the plot), the beads do not
synchronize.
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FIG. 3 (color online). (a) The phase/antiphase transition in the oscillation dynamics of the two particles is observed in experiments
(@), and simulations (open markers), and is adequately captured by theory (lines). Conditions are A = 3.1 um and F;, ~ 0.53 pN, and
noise strength &€ = 2kgT/(AF,) is varied by changing the temperature [from (+) to (O): € = 1.68 X 1077, 8.38 X 1074, 4.96 X 1073
(room temperature), 1.68 X 1072, and 8.38 X 1072]. {Q) characterizes the state of oscillations (1 in antiphase and —1 in in-phase
oscillations). Experiments should be compared with the simulations in (@). At any temperature, the state of synchronization is either in
phase or in antiphase, depending on the sign the curvature ¢, with a sharper transition at lower temperature. The transition is smoother
when noise is added. Theory fits very well with experiments and simulations up to room temperature. Inset: phase diagram showing
synchronized states in phase (P), in antiphase (AP), or not synchronized (NS). Theory (lines), simulations (+), and experiments (O)
show, for each value of the noise strength £, the value of ¢ for which |Q| = 1/2. The dotted line shows the noise strength estimated for
Chlamydomonas. The probability distributions of Q at T = 296 K in experiments (b), simulations (c), and from the theoretical
argument (d) show that in the presence of noise, the peaks are still centered around *1 but with a large spreading. The theoretical
curves are interrupted close to the zero crossing, since the analytical formula fails to describe the state when synchronization is very
weak or lost (see the Supplemental Material [22]). In the simulations, s = 1 wm. The synchronization of two beads is relevant to
understanding the biflagellated organism Chlamydomonas, whose flagella perform periodic orbits in plane. The forces exerted on the
fluid can be modeled as arising from a point source (a bead) and decomposed into orthogonal directions, as shown in panels (e) and (f);
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the consequences for synchronization are discussed in the text.

(indicates whether the driving force is pushing the bead
towards increasing or decreasing positions). Q is normal-
ized so that —1 < Q <1, with Q = —1 describing in-
phase motion and Q = 1 anti-phase motion. As defined
in Eq. (4), it is calculated for each half cycle, and its
average over an experiment is (Q);. As the curvature
changes sign, both the experiments and the simulations
show a transition from in-phase (P) to antiphase (AP)
motion. In the limit of no noise (which is not accessible
experimentally), we recover the known result that the pure
P and AP motion are the only possible stable states, and the
system converges to either one depending on the sign of c.
Only for @ = =2 can this result be obtained analytically,
as previously shown for a = 2 [14]. However, the main
question lies in the role of noise in the crossover between
positive and negative curvature, and therefore requires a
more general approach.

Interestingly, the general deterministic (no noise) behav-
ior can be estimated analytically using an approximating
two-slopes potential [Fig. 1(c)], which can approximate
both the simulated results (power law potentials) and ex-
perimental results (where the shape is not a specific ana-
lytical function). We illustrate explicitly here the case for
¢ <0, for which we expect in-phase synchronization.
Consider, as a proxy for the phase, the time difference ¢,
between the nearest switch of the second bead that occurs
closest in time to a switch of the first bead (defined for

every half cycle k of one of the beads). We aim to provide

an expression of t(lkﬂ) depending on t(lk). Note that 1, =0
can correspond to either an P or AP oscillation depending
on the sign of o (f)o,(¢) at the simultaneous switch time,
but we assume here for the sake of argument an initial
condition close to the in-phase state. Since in this approxi-
mation the driving potentials are only defined with constant
forces, and the hydrodynamic coupling term in Eq. (2) is
linear, the half cycle k& can be split into four parts
within which the velocities of the beads will be constant

. k
at i%(Fu + eF,) with u, v € {'b/,’e'}. Therefore, t(1 ),

1,‘(1]{+ l), the start times of each part, and the positions at these
times are all related by a linear system of equations that is
solved in the Supplemental Material [22] and leads to a
simple iterative map for ¢,

F; —F?2

(k+1) _ (k)
t = Kpl, ,
1 P F,F,

with kp =1+ 2e¢ , (5

to first order in the coupling coefficient €. For ¢ <0, F, >
F;, and kp < 1, leading to the known result that in-phase
synchronization is stable. Identical equations hold for the
antiphase state with a k,p having reversed sign for €, and
hence give stability for ¢ > 0. This simple model shows
that the state of synchronization depends on the sign of c.
Note that for ¢ = 0, kp = kp = 1 and the system does not
synchronize. This particular case is expected, since the
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driving force over a cycle should be nonreversible in time
to allow synchronization, at least in the absence of thermal
fluctuations [7].

Most importantly, having approximated the driving
potentials, it is possible to estimate analytically the role
of noise in synchronization. Thermal noise adds fluctua-
tions to #; at each half cycle, represented as a random
variable £(i) added to Eq. (5)

D = 0+ 7 (k). (6)

Here « simply represents either xp or k,p depending on the
sign of ¢, allowing us to solve both P and AP cases at the
same time. For one bead, the time difference between two
consecutive switches is a first passage time. We estimate its
distribution by considering each of the two linear portions
of the potential separately, and neglecting the change of
velocity of the beads due to the coupling term, as well as
the correlations in the noise. By combining the supposed
independent fluctuations for each bead (generalizing the
procedure carried out in Ref. [15]), we approximate £(i) as
a zero-mean Gaussian random variable of variance

4ADy? 1+ ¢?
Fy (1—c»)Y

var[{(k)] = (7
with D = kT /v the diffusion coefficient of a particle. By
iterating Eq. (6) we deduce the autocorrelation function of
t: g, (k) = k*g,(0), with g, (0) = var({)/(1 — «*) the
variance of f;. g, is compared to simulations in Fig. 4.
As 1, is linked to the phase between the two beads, (Q);
can be written in terms of g, (0) and the analytical func-
tion (Q), is displayed in Fig. 3(a). Further details concern-
ing this calculation are provided in the Supplemental
Material [22].

From the degree of order in the dynamics (which we take
as the threshold [(Q);| > 1/2) it is possible to draw a phase
diagram for the synchronized states as a function of the two
important parameters: curvature and noise amplitude. As
shown in the inset of Fig. 3(a), the analytical estimate
agrees very well with the BD simulations, up to consid-
erable levels of noise. Figure 4 shows that the simulated
autocorrelation functions decay in a few cycles for highly
curved potentials (large |c|), and slower near the transition,
where k — 1.

The predictive power of the bilinear model demonstrates
that the relevant feature of the internal engine affecting the
synchronized state is the difference between the forces at
the instances of switch. We now illustrate how this is
relevant to synchronization in biological cilia and flagella,
by taking as an example the biflagellated alga C. reinhardtii
sketched in Figs. 3(e) and 3(f), where the synchronization
state of the two beating filaments can be tuned, leading to
different swimming modes: directed runs, and random
tumbling [10]. In order to map the synchronization of the
two flagella of Chlamydomonas with our coarse-grained
model made of two beads, we need (a) to reconstruct the

Cycle index k

FIG. 4 (color online). Autocorrelation of the phase #; between
the two beads in simulations for different values of ¢: —0.42 (X),
—0.20 (O), —0.0071 (<), 0.20 (A), and 042 (V) fitted to
exponential decays (solid lines). Inset: simulated decay coeffi-
cients k for & =4.96 X 1073 (+) and ¢ = 8.38 X 107 (X) are
in good agreement with the theoretical values (line). The strength
of synchronization is the strongest for the highest curvatures
(high |c|). Theory and simulations differ for ¢ = 0 because the
assumption that oscillations are nearly in phase or in antiphase
becomes wrong; when the noise strength increases this happens
for larger values of c. Parameters are the same as in Fig. 3.

driving potentials of each flagellum and (b) to project the
oscillations along one particular direction. This is done
by using data of flagellum configurations during beating
in a uniflagellated Chlamydomonas [25]. A flagellum at
instant ¢ is represented by a bead located at the center of
mass of the filament, subject to a driving force that is the
opposite of the total force from the fluid acting on the
flagellum. This model is one dimensional (i.e., the cou-
pling forces from the Oseen tensor are in the same direc-
tion as the driving forces) in the two particular cases that
we consider here: driving forces along x and along y, with
x the direction of the line defined by the average position
of the two beads [see Figs. 3(e) and 3(f)]. The case of
oscillations along x was explicitly treated up to here; the
other case is described by the same equations, replacing x
by y and changing the coupling term € to 3a/(4d).
Projecting the forces from Chlamydomonas into parallel
and perpendicular components to the direction of motion,
effective one-dimensional switching potentials can be
obtained. More details on the matching of the parameters
from the data on Chlamydomonas to the model are dis-
cussed in the Supplemental Material [22]. Several con-
clusions are found from this matching procedure: First,
the mapping recovers the correct synchronized state both
when projected along x and y, i.e., flagella oscillate in
phase along y and in antiphase along x. Second, as illus-
trated by the dotted line in Fig. 3(a), the biological system
appears quite far from the noise threshold. Third, the
model predicts that the component of the hydrodynamic
interaction which dominates the synchronization is x, i.e.,
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transverse to the swimming direction of the microorgan-
isms. This last point would be relevant in conditions
where the presence of multiple organisms contributes
additional periodic forces.

The phase diagram of the dynamical state versus curva-
ture and noise enables biological systems to be mapped
onto the model. This is useful in two ways: for systems
(like Chlamydomonas) for which the cilia’s force cycle has
been measured, it is possible as outlined above to predict
the state of synchronization from the coarse graining of
internal degrees of freedom; on the contrary from the
observation of cilia correlations at steady state it is possible
to set boundaries on the cilia geometric parameters
(distance, filament length) and on the average properties
of the active force cycle, which result from the activity of
molecular motors and the filament structure.

The geometric switch system with curved potentials has
no threshold for synchronization in the absence of noise.
This work shows the importance of balancing the curvature
of the driving potential to the level of noise: a stronger
curvature makes the steady state more robust, pointing to a
requirement of time asymmetry in the driving potential for
strong synchronization.
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