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This supplementary note presents in more detail the calculation that leads to an estimate of the fluctuations around
the synchronized state.

I. CYCLE OF OSCILLATION

We consider the oscillation represented in Fig. 1 of the main text. The initial condition is position a/2, following
a geometric switch. The time t1(i) between the geometric switch and the previous clock switch, at cycle i, can be
used to measure synchronization. Our aim is to estimate the distribution of t1(i+ 1) after one cycle, and use it in a
fixed-point argument for the noise.
A cycle corresponds to a sequence of four stages. During the first, the bead has velocity −v(1 − ϵ) during a time

t2(i) = Tc/2− t1(i). Subsequently, between the clock switch and the next geometric switch, the velocity is −v(1 + ϵ)
during a time t3(i). The third and fourth stages describe the other half of the oscillation, with (positive) velocity
v(1− ϵ) for a time Tc/2− t3(i) and v(1 + ϵ) for a time t1(i+ 1).
This calculation requires to evaluate how thermal noise affects the cycle in two ways. First, in the time between

a geometric switch and a clock switch, the bead is subject to a driving force and diffusion, which makes the arrival
position rj(i) (j ∈ {1, 2} indexes the half-cycle bead positions) at the clock switch stochastic. Second, the evaluation
of the time between the position rj(i) and the position of the next geometric switch is a first-passage time problem
that contributes to the stochasticity of the times t3(i) and t1(i+ 1).

II. EQUATION OF EVOLUTION OF TIME t1

We now detail the different stages of the cycle. As the delay t1(i) between the starting geometric switch and
the previous clock switch is known, the duration of the random walk between the geometric switch and the next
clock switch is prescribed, t2(i) = Tc/2 − t1(i). The position of the particle at the clock switch is given by r1(i) =
v(1− ϵ)t2(i)+x1(i). v(1− ϵ)t2(i) is the deterministic arrival time and x1(i) corresponds to the fluctuations due to the
diffusion of the particle: ⟨x1(i)⟩ = 0 and

⟨
x2
1(i)

⟩
= 2Dt2(i) = 2D (Tc/2− t1(i)) with D the diffusion coefficient. In

order to carry out the argument, we assume that any transient behavior is past, and that t1(i) can be approximated

by its average tfp1 in the expression of the variance.
After the clock switch, the bead moves over a distance a′ = a − r1(i) at an average velocity v′ = −v(1 + ϵ). The

arrival time t3(i) of this process is described by the first-passage time probability density F (t3(i)), where F is the
inverse Gaussian [1]

F (t) =
1√

4πDt3
e−

(a′−v′t)2
4Dt . (1)

This probability density is well approximated by a Gaussian in the small diffusion limit, i.e. when a′/v′ ≪ a′2/2D
(in this case the skewness of this distribution is small). Equivalently, this approximation holds for times t such as
v′t/a′ ∈ [1−

√
ξ′, 1 +

√
ξ′] with ξ′ = 2D/(a′v′).

This condition is satisfied for ξ′ ≪ 1, so that the first-passage time distribution F is well-approximated by a
Gaussian centered on (a − r1(i))/(v(1 + ϵ)) and of variance 2Da′/(v3(1 + ϵ)3). Since a′ is itself a random variable,

we replace, as above in the variance a′ by its average value: ⟨a′⟩ = v(1 + ϵ)tfp1 . These two assumptions lead to the
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following formula for the time t3(i),

t3(i) =
a− r1(i)

v(1 + ϵ)
+ ζ1(i) (2)

=
A/v − (1− ϵ)Tc/2

1 + ϵ
+ κt1 −

x1(i)

v(1 + ϵ)
+ ζ1(i) (3)

= h(t1(i)) , (4)

with ⟨ζ1⟩ = 0,
⟨
ζ21
⟩
= 2D ⟨t1⟩ /(v2(1 + ϵ)2) and κ = (1− ϵ)/(1 + ϵ).

Eq. (4) describes only the first half of the cycle. The second half is symmetric, with the only difference that the
velocities become positive. The time t1(i+ 1) is therefore obtained by iterating Eq. (4)

t1(i+ 1) = h(h(t1(i))) (5)

= (1 + κ)
A/v − (1− ϵ)Tc/2

1 + ϵ
+ κ2t1(i) + χ(i) , (6)

with

χ(i) = κ

(
x1(i)

−v(1 + ϵ)
+ ζ1(i)

)
+

x2(i)

−v(1 + ϵ)
+ ζ2(i) . (7)

Here, x2(i) and ζ2(i) represent the fluctuations in the second half of the cycle and are defined similarly as in the first
half-cycle. In this approximation, since all the random variables are assumed Gaussian, χ(i) also follows a Gaussian
distribution centered on 0 and with variance

var (χ) = (1 + κ2)

(
var (x1)

v2(1 + ϵ)2
+ var (ζ1)

)
(8)

= (1 + κ2)(V1 + V2) , (9)

with V1 = 2D(Tc/2− ⟨t1⟩)/(v2(1 + ϵ)2) and V2 = 2D ⟨t1⟩ /(v2(1 + ϵ)2).
We assume now that the clock period is set to the natural particle period 2a/v. The evolution equation over one

full cycle becomes

t1(i+ 1) = (1 + κ)
Aϵ

v(1 + ϵ)
+ κ2t1(i) + χ(i)

with var (χ) = (1 + κ2)
DTc

v2(1 + ϵ)2
.

(10)

Removing the noise term χ(i) in this equation gives the deterministic fixed point tfp1 = a/(2v) = Tc/4. Since the noise

only adds fluctuations around this fixed point, we study the deviations q(i) = t1(i)− tfp1 . Expressed with q, Eq. (10)
becomes

q(i+ 1) = κ2q(i) + χ(i) , (11)

or

δq = q(i+ 1)− q(i) = − 4qϵ

(1 + ϵ)2
+ χ(i). (12)

Eq. (11) shows the contribution of the deterministic part, due to the system geometry which makes q decay to 0 with
the typical decay time of (1 + ϵ)2/(4ϵ) cycles, and the noise, which adds fluctuations.
We present now two methods to carry out the argument leading to the quantification of the fluctuations for q.

III. SOLVING USING THE CONTINUOUS LANGEVIN EQUATION

The main text contains an approximated solution in which the main equation is treated as a continuous Langevin
equation, although it is discrete. This procedure requires to convert Eq. (12) into a continuous equation. One way to
perform this task reducing the size of the steps at each iteration. Formally, we look therefore for an equation

q

(
i+

1

n

)
= αq(i) + δ(i) (13)
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that would describe the system. n is an integer that allows to take the continuum limit. α is a coefficient and
δ(i) a Gaussian random variable. These coefficients can be found by iterating Eq. (13) n times and identifying the
coefficients with Eq. (11). The procedure leads to the following evolution equation

q

(
i+

1

n

)
− q(i) = −(1− κ

2
n )q(i) + δ(i) , (14)

with

var (δ) =
1− κ

4
n

1− κ4
var (χ) . (15)

Eq. (14) is a continuous Langevin equation when n tends to infinity. Therefore, the variance of q at long times is
estimated by

var (q(∞)) = lim
n→∞

var (δ)

2(1− κ
2
n )

(16)

= lim
n→∞

1 + κ
2
n

2(1− κ4)
var (χ) (17)

=
var (χ)

1− κ4
(18)

=
DTc

4ϵv2
. (19)

This can be expressed in dimensionless parameters as the fluctuations of the phase ϕ1,

var (ϕ1) = var

(
q(∞)

Tc

)
=

ξ

16ϵ
. (20)

When the clock period does not match the natural oscillation time of the oscillator, but is longer or shorter,
Tc = 2a/v + δ, the calculation follows the same steps, starting form Eq. (10) and replacing the clock period with
Tc = 2a/v + δ, instead of 2a/v.

IV. SOLVING BY ITERATING THE EQUATION FOR THE VARIANCE

In order to estimate the fluctuations of q, we can also directly iterate Eq. (11), starting from an initial condition
q(0) and

q(n+ 1) = κ2(n+1)q(0) +
n∑

i=0

κ2iχ(n− i) . (21)

Evaluating the fluctuations of q(∞) = limn→∞ q(n+ 1) one gets

q(∞) =

∞∑
i=0

κ2iχ(n− i) . (22)

This is a Gaussian random variable with variance

var (q(∞)) =

∞∑
i=0

κ4ivar (χ) (23)

=
1

1− κ4
var (χ) (24)

=
DTc

4ϵv2
. (25)

This is the same result as Eq. (19).

[1] S. Redner, A Guide to First-Passage Processes (Cambridge University Press, 2001).


