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The driving force on individual rotors is
independent of height above the wall

For a single bead of radius a in a viscous fluid, situ-
ated at a distance h from an infinite no-slip boundary,
the external applied force F is related to its velocity v
according to F = ζ · v, where ζ is the anisotropic drag
matrix, given by [1]

ζ = ζ(h) = ζ0
[
I + 9a

16h (I + ezez) +O((a/z)3)
]
. (S1)

The coefficient ζ0 = 6πµa is the drag on the sphere in
an unbounded fluid of viscosity µ (equivalent to setting
h→∞). We are interested only in trajectories which are
parallel to the no-slip wall (v · ez = 0). For a constant
applied driving force Fdr, the sphere’s speed v = |v| is
given by

v ' Fdr

ζ0(1 + 9
16
a
h )
, (S2)

implying a monotonic increase of the sphere’s speed with
h for a given Fdr. Each set of experiments involves
studying the colloidal oscillators at a number of differ-
ent heights h. For each set, the centre of the trajec-
tory, its radius and the driving and radial forces are cal-
ibrated, for each individually loaded rotor, at the height
of h = 22µm. These are then checked for independence
on h. Figure S1 shows, after a full calibration, the speed
of an individually loaded colloidal oscillator at 6 differ-
ent heights together with the prediction from Eq. (S2)
using a constant driving force. The two agree well for
Fdr = 2.23 pN.

Single rotor force calibration Hydrodynamic
interaction of two rotors at an arbitrary distance

from a no-slip plane

The fluid disturbance produced by the motion of a
sphere parallel to a no-slip wall depends on its height
above the planar boundary. For two such spheres situ-
ated in the fluid, it is important to calculate the strength
of the hydrodynamic interactions between them, and the
subsequent effects on their dynamics. We consider two
spheres of radius a driven around circular orbits of ra-
dius R0 which are parallel to a no-slip wall. The orbit’s
centers are located at positions (x, y, z) = (0, 0, h) and
(`, 0, h) respectively. The plane z = 0 represents the no-
slip boundary, with the semi-infinite domain z > 0 filled

FIG. S1. Calibration of an individual colloidal oscillator, mov-
ing under the influence of a harmonic potential in an opti-
cal tweezer. Experimental results (dots) are shown alongside
the prediction of Eq. (S2), with which the driving force of
Fdr = 2.23 pN can be extracted.

with fluid of viscosity µ. (êφ1, êR1) and (êφ2, êR2) are the
unit vectors of the local cylindrical frame of reference
of each single rotor. This reference frame is centered at
the center of the orbit. The displacement of each sphere
from the center of its trajectory will be expressed in its
cylindrical frame of reference as (R1, φ1) and (R2, φ2) re-
spectively. Each rotor is subject to a constant tangential
driving force Fi = FiêRi, and also to a radial spring force
with stiffness λ, which suppresses excursions from the
equilibrium radius Ri. The spring stiffness is assumed
to be large enough that the radial degree of freedom is
slaved to the angular degree of freedom. That is, know-
ing (φ1, φ2), we know the instantaneous value of (R1, R2).
It will be our goal to derive the equations of motion of
the spheres, without making any assumptions about the
relative magnitudes of ` and h.

We assume that sphere radius and trajectory radius
are both small compared to other length scales (a,R0 �
h, `). Correspondingly, the two orbits are sufficiently far
from each other that we can neglect the variation in the
relative separation between the spheres as they move.
The separation vector will always be taken to be `êx.
We will write the relation between the sphere’s angular
velocity ωi and the tangential driving force Fi, as Fi =
ζ0ζwR0ωi, where ζ0 = 6πµa is the bulk drag coefficient,
and ζw is the correction due to the presence of the wall.
For sufficiently small a/h this correction can be written as

ζw = 1+(9a/16h)+O((a/h)
3
). The first thing required is

the generic expression of the ‘Blakelet’, i.e. the Stokeslet
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on top of a bounding wall. This is given by [2]:

v21,i =
Fj

8πµ
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)
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R
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(S3)

Here r = (`, 0, 0), r = |r|; R = (`, 0, 2h), R = |R|;
α ∈ {1, 2}. In our case, the point force will be in the
(x, y) plane. Furthermore, we are only interested in the
component of the velocity in the same plane, since the
trajectories are constrained to lie at z = h. The back-
ground flow is due to the motion of the other sphere,
which is:

v21,|| =
1

8πµ
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+
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)
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]
. (S4)

In the limit as h → 0, this reduces to Eq. (16) in [3].
Being interested only in the || component, and because
F = F||, we can substitute

R(F ·R) = (r + 2hê3)(F · r)→ r(F · r). (S5)

Calling, as in [3], s = F/8πµ we get

v21,|| =
A(β)s +B(β)r̂(s · r̂)

r
(S6)

where r̂ = r/r = êx, called n21 in [3]; β = 2h/`, and

A(β) = 1−
(

1

1 + β2

) 1
2

− β2

2

(
1

1 + β2

) 3
2

(S7)

B(β) = 1−
(

1

1 + β2

) 3
2

+
3β2

2

(
1

1 + β2

) 5
2

(S8)

Notice that, due to the nearby wall, the strength of the
Stokeslet s is written in terms of the sphere’s velocity as:

s =
3

4
aζ0ζwRiφ̇iêφi . (S9)

The derivation of the equations of motion follows the
same procedure outlined in Appendix A of [3]. The only
things we need to calculate are:

êφ1 · v12 =
3a

8`
ζwR2φ̇2[(2A(β) +B(β)) cos(φ1 − φ2)

+B(β) cos(φ1 + φ2)], (S10)

êR1 · v12 =
3a

8`
ζwR2φ̇2[(2A(β) +B(β)) sin(φ1 − φ2)

+B(β) sin(φ1 + φ2)]. (S11)

The rest of the calculation can be carried out in exactly
the same way as in [3] and the final result is

φ̇1 = ω1 − ρω2J(φ1, φ2;β)− ραω1ω2K(φ1, φ2;β),
(S12)

φ̇2 = ω2 − ρω1J(φ2, φ1;β)− ραω1ω2K(φ2, φ1;β),
(S13)

where now ρ = 3aζw/8`, α = ω̄ζ0ζw/λ, and

J(φi, φj : β) = −[(2A(β) +B(β)) cos(φi − φj)
+B(β) cos(φi + φj)] (S14)

K(φi, φj : β) = (2A(β) +B(β)) sin(φi − φj)
+B(β) sin(φi + φj). (S15)

For example, this means that the phase difference χ =
φ2 − φ1 and phase sum Φ = φ1 + φ2 evolve according to

χ̇ = (ω2 − ω1)[1 + ρJ(φ1, φ2;β)]

− 2ραω1ω2(2A(β) +B(β)) sin(χ), (S16)

Φ̇ = (ω1 + ω2)[1 + ρ(2A(β) +B(β)) cosχ

+ ρB(β) cos Φ]− 2ραω1ω2B(β) sin Φ. (S17)

To the first order in the small quantities ∆ω = ω2 − ω1

and ρ, and averaging over a “natural” timescale of the
fast variable Φ we get

χ̇ = ∆ω − 2αω1ω2 ρ(2A(β) +B(β)) sinχ. (S18)

〈Φ̇〉 = (ω1 + ω2) [1 + ρ(2A(β) +B(β)) cosχ] . (S19)

These functions can be rewritten as

χ̇ = ∆ω + D̃(χ) (S20)

〈Φ̇〉 = (ω1 + ω2) + S̃(χ) (S21)

where D̃(χ) = D0 sinχ and S̃(χ) = S0 cosχ. As in [3],
time has been rescaled according to the mean angular
speed ω̄, and both ωi are measured in units of ω̄. Rewrit-
ing Eq. (S18) in dimensional units yields

χ̇ = ∆ω − 3a

4`

ζ0ζ
2
w

λ
ω1ω2

[
2A(β) +B(β)

]
sin(χ). (S22)

This is of the form χ̇ = ∆ω − C sin(χ), with C > 0. If
|∆ω| < C then a stable fixed point χ̇ = 0 exists. Con-
versely, for |∆ω| > C, a cycle-averaged phase drift will
occur. We use the following relation∫ 2π

0

[
a− b sinχ

]−1
dχ =

2π√
a2 − b2

, for |a| > |b| (S23)
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to find the time-averaged phase drift

χ̇av =

√
(∆ω)2 −

(
3a

4l

ζ0ζ2w
λ

ω1ω2

[
2A(β) +B(β)

])2

.

(S24)
For each rotor (indexed by i ∈ {0, 1}), the intrinsic an-
gular frequency is given by ωi = Fi/(ζ0ζwR0) and so the
above equations reads:

χ̇av =

√(
F1 − F0

R0ζ0ζw

)2

−
(

3a

4`

F0F1

λζ0R2
0

[
2A(β) +B(β)

])2

.

(S25)
Since a detuning factor D is included so that the driv-
ing force is Fi = FdrD

i−1/2, the above equation can be
written as

χ̇av =
Fdr

R0ζ0

√
(D − 1)2

D ζ2w
−
(

3a

4`

Fdr

λR0

[
2A(β) +B(β)

])2

.

(S26)
The threshold value of D beyond which the rotors’ phase
difference will drift can be calculated explicitly.

Varying chain length

In order to assess the generality of the results presented
in the main text, we used numerical simulations to ex-
plore the effect of changing the number of rotors, N ,
present in the linear array (see. Fig. 1a). Figure S2 shows
the average phase drift (measured in beats per beat) with
respect to the first rotor, along chains of different length,
N ∈ {2, 15}. Each chain has a fixed detuning of 5% be-
tween the end rotors. For each height h = 10µm and
h = 100µm, simulations were conducted with full hydro-
dynamic coupling and nearest neighbor coupling only.

The results for N = 6 are representative of the dynam-
ics across a range of chain lengths. For chains in which
rotors are coupled through nearest neighbor interactions,
the rotors tend to phase-lock in clusters of 2-5 rotors. As
discussed in the main text, the nearest neighbor results
are fairly insensitive to changes in h, shown here by the
similarly between the results of Fig. S2b and d. In stark
contrast, the chains in which rotors are fully coupled to
one another through hydrodynamic interactions exhibit
qualitatively different behavior at different heights.

Truncation of hydrodynamic interactions

Figure S3 shows the results of deterministic numerical
simulations, with hydrodynamic interactions truncated
to be nearest neighbor in nature (see also Fig. 4d). The
dynamics are almost completely insensitive to changes in
h, across several orders of magnitude.

FIG. S2. (color online). Average phase drift with respect
to the first rotor, for chains of different lengths N ∈ {2, 15},
at two different heights h ∈ {10µm, 100µm}, and subject to
either full hydrodynamic coupling or nearest neighbor inter-
actions only. The end-to-end detuning is fixed at 5% in each
case, the radial spring stiffness is λ = 4.5 pN/µm, and all
other parameters are as in Fig. 4.

FIG. S3. (color online). Kymographs showing the phase sinφi

along the linear chain of model rotors, coupled hydrodynam-
ically through the Blake tensor, but with interactions arti-
ficially restricted to be nearest neigbor. The radial spring
stiffness is λ = 4.5 pN/µm and all other parameters are as in
Fig. 4.
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